CBSE

MATHEMATICS (Standard), Class-X

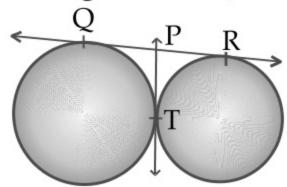
Sample Question Paper

For 2020 Examination

Time: 3 Hours

Max. Marks: 80

General Instructions:


- (i) All the questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C and D.
- (iii) Section A comprises 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- **(iv)** There is no overall choice. However, an internal choice has been provided in six questions of 1 marks each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

Section 'A'

Question numbers 1 to 10 carry 1 mark each. For each of these questions four alternative choices have been provided of which only one is correct. Select the correct choice.

- 1. The 11th term of the A.P.,: $-5, \frac{-5}{2}, 0, \frac{5}{2}, \dots$ is:
 - **(a)** 20
- **(b)** 20
- (c) 30
- (**d)** 30

AI 2. In fig. QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets QR at P. if PT = 3.8 cm, then the length of QR (in cm) is:

- (a) 3.8
- **(b)** 7.6
- (c) 5.7
- (d) 1.9

OR

If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not true?

(a) $BC \times EF = AC \times FD$

(b) $AB \times EF = AC \times DE$

(c) $BC \times DE = AB \times EF$

- (d) $BC \times DE = AB \times FD$
- 3. A ladder makes an angle of 60° with the ground when placed against a wall. If the foot of the ladder is 2m away from the wall, then the length of the ladder (in meters) is:
 - (a) $\frac{4}{\sqrt{3}}$
- **(b)** $4\sqrt{3}$
- (c) $2\sqrt{2}$
- (d) 4
- 4. It two different dice are rolled together, the probability of getting an even number on both dice, is:
 - (a) $\frac{1}{36}$

- (b) $\frac{1}{2}$
- (c) $\frac{1}{6}$

(d) $\frac{1}{4}$

If x_i 's are the mid-points of the class intervals of grouped data f_i 's are the corresponding frequencies and x is the mean, then $\sum (f_i x_i - x)$ is equal to :

(a) 0

(b) -1

(c) 1

(d) 2

5. If the point A (x, 2), B (-3, -4) and C (7, -5) are collinear, then the value of x is :

(a) - 63

(b) 63

(c) 60

(d) -60

6. The number of solid spheres, each of diameter 6 cm that can be made by melting a sold metal cylinder of height 45 cm and diameter 4 cm is:

(a) 3

(b) 5

(c) 4

(d) 6

7. The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is :

(a) 5

(b) 12

(c) 11

(d) $7+\sqrt{5}$

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is:

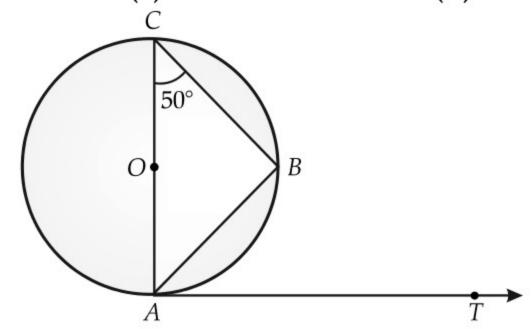
(a) 2:1

(b) 1:2

(c) 4:1

(d) 1:4

OR


In the given figure, AB is a chord of the circle and AOC is its diameter, such that $\angle ACB = 50^{\circ}$. If AT is the tangent to the circle at the point A, then $\angle BAT$ is equal to :

(a) 65°

(b) 60°

(c) 50°

(d) 40°

9. Given that $\sin \theta = \frac{a}{b}$, then $\cos \theta$ is equal to:

(a) $\frac{b}{\sqrt{b^2 - a^2}}$ (b) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$

10. If $\frac{1}{2}$ is a root of the equation $x^2 + kx - \frac{5}{4} = 0$, then the value of k is :

(a) 2

(b) -2 (c) $\frac{1}{4}$ (d) $\frac{1}{2}$

Question numbers 11 to 15 carry 1 mark each. Write whether the statements are true or false.

11. Every quadratic equation has exactly one root.

12. The point A (2, 7) lies on the perpendicular bisector of line segment joining the points P (6, 5) and Q(0,-4).

13. $\frac{\tan 47^{\circ}}{\cot 43^{\circ}} = 1$

14. The length of tangent from an external point on a circle is always greater than radius of the circle.

15. By geometrical construction, it is possible to divide a line segment in ratio $\sqrt{3}:\frac{1}{\sqrt{3}}$.

Question numbers 16 to 20 carry 1 mark each.

16. Find the value of a, for which point $P\left(\frac{a}{3},2\right)$ is the mid-point of the line segment joining the points

Q(-5, 4) and R(-1, 0).

17. Find the value of k, for which one root of the quadratic equation $kx^2 - 14x + 8 = 0$ is 2.

OR

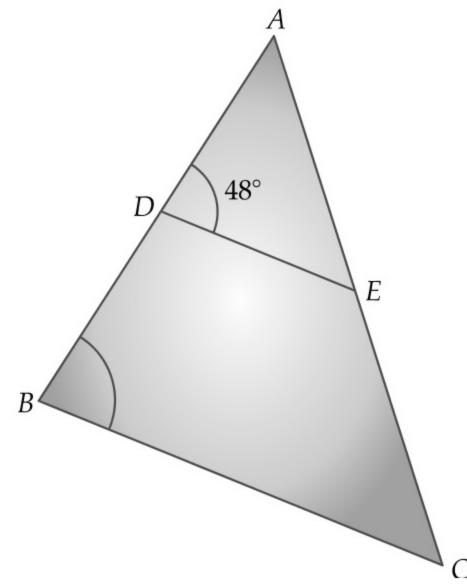
Find the value (s) of k for which the equation $x^2 + 5kx + 16 = 0$ has real and equal roots.

18. Write the value of $\cot^2 \theta - \frac{1}{\sin^2 \theta}$.

OR

If $\sin \theta = \cos \theta$, then find the value of $2 \tan \theta + \cos^2 \theta$.

19. If the nth term of an A.P. is (2n + 1), what is the sum of its first three terms?


OR

1

2

Write whether $\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}}$ on simplification gives an irrational or a rational number.

20. In the figure if AD = 6cm, DB = 9cm, AE = 8cm and EC = 12 cm and $\angle ADE = 48^{\circ}$. Find $\angle ABC$.

Question numbers 21 to 26 carry 2 marks each.

21. The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.

OR

Show that $7 - \sqrt{5}$ is irrational, given that $\sqrt{5}$ is irrational.

22. Find the 20th term from the last term of the AP 3, 8, 13,....,253.

JK

If 7 times the 7th term of an A.P is equal to 11 times its 11th term, then find its 18th term.

- **23.** Find the coordinates of the point P which divides the line joining of A (-2, 5) and B (3, -5) in the ratio 2 : 3.
- 24. A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.
- 25. Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number.2
- \blacksquare 26. For what value of p will the following pair of linear equations have infinitely many solutions.

$$(p-3)x + 3y = p$$
$$px + py = 12$$

Section 'C'

Question numbers 27 to 34 carry 3 marks each.

- 27. Use Euclid's Division Algorithm to find the HCF of 726 and 275.
- **AI** 28. Find the zeroes of the following polynomial:

$$5\sqrt{5}x^2 + 30x + 8\sqrt{5}$$

3

3

- 29. Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.
- 30. The points A (1, -2), B(2, 3), C (k, 2) and D (-4, -3) are the vertices of a parallelogram. Find the value of k.

OR

Find the value of k for which the points (3k-1, k-2), (k, k-7) and (k-1, -k-2) are collinear.

31. Prove that $\cot \theta - \tan \theta = \frac{2\cos^2 \theta - 1}{\sin \theta \cos \theta}$

OR

Prove that $\sin \theta (1 + \tan \theta) + \cos \theta (1 + \cot \theta) = \sec \theta + \csc \theta$.

- 32. The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.
 3
- 33. In $\triangle ABC$, if AD is the median, then show that $AB^2 + AC^2 = 2 (AD^2 + BD^2)$

34. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm.

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6 cm. Find the number of balls.

Section 'D'

Question numbers 35 to 40 carry 4 marks each.

35. A train takes 2 hours less for a journey of 300 km if its speed is increased by 5 km/h from its usual speed. Find the usual speed of the train.

Solve for
$$x : \frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
, $[a \ne 0, b \ne 0, x \ne 0, x \ne -(a+b)]$

- 36. Prove that in a right angled triangle, square of the hypotenuse is equal to sum of the squares of other two sides.
- 37. Draw a \triangle ABC with sides 6cm, 8 cm and 9 cm and then construct a triangle similar to \triangle ABC whose sides are $\frac{3}{5}$ of the corresponding sides of \triangle ABC.

- **AI** 38. A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45°, how long will the car take to reach the observation tower from this point?

 4
- **39.** The median of the following data is 525. Find the values of *x* and *y* if the total frequency is 100.

Class Interval	Frequency
0 - 100	2
100 - 200	5
200 – 300	x
300 – 400	12
400 – 500	17
500 - 600	20
600 – 700	y
700 – 800	9
800 – 900	7
900 – 1000	4

OR

The following data indicates the marks of 53 students in Mathematics.

Marks	Number of Students
0 – 10	5
10 – 20	3
20 – 30	4
30 – 40	3
40 – 50	3
50 - 60	4
60 – 70	7
70 - 80	9
80 – 90	7
90 – 100	8

Draw less than type ogive for the data above and hence find the median.

40. If $\sec \theta + \tan \theta = p$, then find the value of $\csc \theta$.

OR

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

_