## MATHEMTICS - IX

1. Decimal representation of a rational number cannot be

# Self Assessment Paper

## Section 'A'

(a) terminating

(c) non-terminating repeating

Question 1 to 10 carry 1 mark each. Each question has four alternate answers of which only one is correct. Choose the correct answer.

OR

**(b)** non-terminating

(d) non-terminating non-repeating

|    | The value of $x^{a-b} \times x^{b-c} \times x^{c-a}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
|    | (a) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                                                   | 1                                                              |  |  |  |  |  |
|    | (c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d)                                                   | <b>x.</b>                                                      |  |  |  |  |  |
| 2  | • One of the zeroes of the polynomial $2x^2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne of the zeroes of the polynomial $2x^2 + 7x - 4$ is |                                                                |  |  |  |  |  |
|    | (a) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                                                   | $\frac{1}{2}$                                                  |  |  |  |  |  |
|    | (c) $-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d)                                                   | -2                                                             |  |  |  |  |  |
|    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OI                                                    |                                                                |  |  |  |  |  |
|    | One of the factors of the expression $[4x^3-3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [32] is:                                              |                                                                |  |  |  |  |  |
|    | (a) $(x^2 + 2x + 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b)                                                   | $x^2 - 2x + 4$                                                 |  |  |  |  |  |
|    | (c) $(x^2-2x-4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d)                                                   | None of these                                                  |  |  |  |  |  |
| 3. | The points (others than origin) for which a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bscis                                                 | sa is equal to the ordinate will lie in                        |  |  |  |  |  |
|    | (a) I quadrant only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b)                                                   | II quadrant only                                               |  |  |  |  |  |
|    | (c) I and III quadrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d)                                                   | IV quadrant only                                               |  |  |  |  |  |
| 4. | The perpendicular distance of the point P $(4,7)$ from the $y$ axis is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                                |  |  |  |  |  |
|    | (a) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                                                   | 3                                                              |  |  |  |  |  |
|    | (c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d)                                                   | 1                                                              |  |  |  |  |  |
| 5. | In an isosceles triangle, each of the base vertical angle is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | angle                                                 | es is double the vertical. Then, the measure of the            |  |  |  |  |  |
|    | (a) 35°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b)                                                   | $36^{\circ}$                                                   |  |  |  |  |  |
|    | (c) 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d)                                                   | None of these                                                  |  |  |  |  |  |
| 6  | . The length of the longest rod that can be p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lacec                                                 | l in a room of dimensions (10 m $\times$ 8 m $\times$ 6 m) is  |  |  |  |  |  |
|    | (a) 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b)                                                   | $10\sqrt{2}$ m                                                 |  |  |  |  |  |
|    | (c) 24 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d)                                                   | 480 m.                                                         |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OR                                                    |                                                                |  |  |  |  |  |
|    | The curved surface area of a cylindrical pill diameter to its height is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lar is                                                | $264 m^2$ and its volume is $924 m^3$ . Then, the ratio of its |  |  |  |  |  |
|    | (a) 7:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b)                                                   | 3:7                                                            |  |  |  |  |  |
|    | (c) 7:6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d)                                                   | 6:7                                                            |  |  |  |  |  |
| 7  | If $p$ is the probability of occurrence of an expression $p$ is the probability of occurrence of an expression $p$ is the probability of occurrence of an expression $p$ is the probability of occurrence of an expression $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ is the probability of occurrence of $p$ in $p$ in $p$ is the probability of $p$ in $p$ i | vent l                                                | E, then                                                        |  |  |  |  |  |
|    | (a) $p \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b)                                                   | $p \ge 0$                                                      |  |  |  |  |  |
|    | (c) $0 \le p \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d)                                                   | $0$                                                            |  |  |  |  |  |



(a)  $80^{\circ}$ 

 $160^{\circ}$ (b)

(c)  $110^{\circ}$ 

120° (d)



9. In the given fig. ABCD is a parallelogram. Length of altitude AE is



(a) 3 cm

(b) 6 cm

(c) 9 cm

- (d) 2 cm
- 10. If in a quadrilateral diagonals are drawn and these diagonals are perpendicular, then the quadrilateral is a
  - (a) trapezium

parallelogram

(c) rhombus

rectangle

Questions 11 to 15 carry one mark each. State true or false.

- **11.** Square root of every positive integer is irrational.
- **12.** In the fig., if AB = PQ, PQ = XY then AB = XY.



**13.** PQRS is a trapezium with PQ | | SR, PS | | RU, and ST | RQ. Then, ar (PURS) = ar (QTSR).



- **14.** The area of the isosceles triangle is  $\frac{5}{4}\sqrt{11}$  cm<sup>2</sup>, if the perimeter is 11 cm and the base is 5 cm.
- 15. The diagonals of a rectangle are not perpendicular.

OR

In a parallelogram the opposite angles are supplementary

Questions 16 to 20 carry one mark each

**16.** Name the polynomial containing two non-zero terms.

OR

If x + 1 is a factor of  $ax^3 + x^2 - 2x + 4a - 9$ , find the value of a.

**17.** In  $\triangle ABC$ , if AB = AC and  $\angle B = 70^{\circ}$ , Find  $\angle A$ .

#### OR

In fig. it is given that AB = AC and  $DA \mid \mid BC$ . If  $\angle DAB = 70^{\circ}$ , then the measure of  $\angle BAC$  is:

(a)  $40^{\circ}$ 

**(b)** 50°

(c)  $60^{\circ}$ 

(d) None of these



- **18.** Can the angles 110°, 80°, 70° and 95° be the angles of a quadrilateral? why or why not?
- **19.** The diameter of a football is five times the diameter of a cricket ball. Ratio of surface areas of football and cricket ball is ........
- **20.** The sides of a triangular plot are in the ratio 4 : 5 : 6 and its perimeter is 150 cm, then find its sides.

## Section 'B'

Question number 21 to 26 carry 2 marks each.

21. Is  $\frac{\sqrt{98}}{\sqrt{2}}$  a rational number or not? justify your answer **OR** 

Write the simplest form of a rational number  $\frac{177}{413}$ .

- 22. Prove that every line segment has one and only one mid-point.
- 23. What is the measure of an angle which is complement of itself?



In the given fig. If x + y = w + z, then prove that AOB is line



- **24.** In the figure,  $\triangle$ ABC and  $\triangle$ DBC are two isosceles triangles on the same base BC. Prove that  $\angle$ ABD =  $\angle$ ACD.
- 25. The sides of triangle are 12 cm, 16 cm and 20 cm. Find its area.
- **26.** If the mean of the observations : x, x + 3, x + 5, x + 7, x + 10 is 9, then Find mean of the last three observations.

## Section 'C'

#### Question 27 to 34 carry 3 marks each

- 27. Prove that:  $\frac{a^{-1}}{a^{-1} + b^{-1}} + \frac{a^{-1}}{a^{-1} b^{-1}} = \frac{-(2b^2)}{a^2 b^2}.$
- **28.** Give the equation of a line passing through (2, 14) and origin. How many more such lines are there ? Write the equation in the form ax + by + c = 0.
- **29.** Plot a point P(2, 4) on the graph paper. Now, plot reflections of P by x axis and y axis and denote them as Q and R respectively. Name the type of triangle PQR so formed.
- **30.** In the given parallelogram ABCD, two points P and Q are taken on the diagonal BD such that DP = BQ. Show that :
  - (i)  $\triangle APD \cong \triangle CQB$
  - (ii)  $\triangle AQB \cong \triangle CPD$
  - (iii) APCQ is a parallelogram.



**31.** MNOP is a parallelogram and PN is one of its diagonals show that  $ar(\Delta PMN) = ar(\Delta PON)$ .

#### OR

ABC is an equilateral triangle with perimeter 30 cm. P, Q and R are the mid-points of AO, BO and CO as shown in Fig. Find ar ( $\Delta$ PQR).



Prove that a circle drawn on any one of the equal sides of an isosceles triangle as diameter, bisects the third side.

- **33.** Find the area of triangular field of sides 18 m, 24 m and 30 m. Also find the altitude corresponding to the shortest side.
- **34.** The marks obtained by 30 students in a competitive exam are given below:

| Marks           | 70 | 58 | 61 | 52 | 65 | 75 | 68 |
|-----------------|----|----|----|----|----|----|----|
| No. of Students | 3  | 5  | 4  | 7  | 6  | 2  | 3  |

One student is chosen at random. Find the probability

- (a) that the student scored more than 65 marks.
- **(b)** that the marks scored by the students is an odd number.

#### OR

Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows:

| 0 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 3 | 1 | 1 | 2 | 2 | 0 | 1 | 2 | 1 |
| 3 | 0 | 0 | 1 | 1 | 2 | 3 | 2 | 2 | 0 |

Prepare frequency distribution table for the data given above. Find the no of heads occurs in which head has maximum frequency

### Section 'D'

#### Question 35 to 40 carry 4 marks each

**35.** Prove that:

$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$$

**36.** Find the value of p if the polynomial  $p(x) = x^4 - 2x^3 + 3x^2 - px + 3p - 7$  is divided by (x + 1) leaves the remainder 19. Also find the remainder when p(x) is divided by x + 2.

#### OR

Using factor theorem, show that (m-n), (n-p) and (p-m) are factors of  $m(n^2-p^2)+n(p^2-m^2)+p(m^2-n^2)$ .

- 37. Fahrenheit (F) and Celsius (C) are two different units of temperatures and relation between them is given by  $C = \frac{5}{9}(F 32)$ . Represent this information in the form of a graph taking F on x-axis and C on y-axis. Also, find temperature in Celsius which is equal to 30 degree Fahrenheit.
- **38.** The height, curved surface area and volume of a cone are h, c and V respectively. Prove that  $3\pi V h^3 c^2 h^2 + 9V^2 = 0$

#### OR

A shot-put is a metallic sphere of radius 4.9 cm. If the density of the metal is 7.8 gm per cu cm, find the mass of the shot-put.

- **39.** In Mathematics test given to 15 students, the following marks (out of 90) are recorded: 41, 39, 48, 52, 46, 62, 54, 40, 88, 52, 86, 40, 42, 52, 60 Find the mean, median and mode of this data.
- **40.** Construct a triangle whose angles are in the ratio 1:3:5 and length of side included by first and last angles is 6 cm.