Physics · Class X Chapter -12 (Electricity)

Introduction o Electricity is used in our homes, in industry and in transpirt. o We will discuss following in the chapter: - electric potential - electric current - electric power - hearing reflect of electric current. What is electric change Electric charge, basic property of master carried by some elementy particles (election, proton and other subadomic particles). There are two types of electric charges: positive and regarder charge. Opposite charge (unlike charged while protons are positively charged. Similar charge (like charges) repel each other. Si cen't of electric charge

The 85 cen't of electric charge is covelarms (c).

One couloms is that gueenity of electric charge which exerts a force of 9×10° N on an equal charge placed of a distance of 1 metre from it.

A proton possesses a positive charge of 16×10° c whereas an election possesses a regarire charge of 1.6×10 °C. O) Calculate the number of cleekins constituting one columb of charge.

ADNS: Charge of an election = 1.6×10^{-19} C.

1.6 × 10^{-19} C = 1 election. $/C = \frac{1}{1.6 \times 10^{15}}$ elevors = 6.25×10 elector.

(1)

in 6.23 ×1018 electron.

Thus, 10 (coulomb) is equivalent to the change contained

Flow of electric charges is called electricity (Flowing Cuerrent). Phose substances through which electricity can flow are called conductors. Examples: Silver, copper and aluminium ex. Phose substances through which electricity cannot glow are called insularbus. Example: Glan, rubber, planted, paper, wood ot. Eleveric current is expressed by the amount of charge flowing through a particular area in unit time.

Eleveric convent is the rate of flow of electric charges. All the conductors (like metals) here some election which are loosely held by the nuclei of their atom. These cleations are called "free electrons" and can more from one atom to another atom throughout the conductor. If a net change Q, flows across any cross-section of a condector in time t, then the convert \mathcal{L} , through the cross-section is $\mathcal{I} = Q$ The SI unit of elevoric change (9) is Coulomb (c) which is equivalent to the change contained in nearly 6x10 decim. The electric centert is expressed by a centralled the perpension of change per sectors. The flow of one contents of change per sectors.

That is $1 + \frac{1}{5} = \frac{1}{15} = \frac{1}$

of the little of the

Call March . The Market Park

Electric Circuit A closed conducting just through which electric courtent an destric circuit. may flow is called (Bulb) An instrument called amoneter measure electric current in a circuit. It is always connected through which the current is to be measured. (Cell) Electric current flows it the this course of the cell to the negative electric circuit.)

Terminal of the cell through the bulb and ammeter. 6) A current of 0.5 A is docum by a filement of an electric bulb for 10 minutes. Find the amount of electric charge flows through the circuit. POND) Given: S=0.5P, t=10min=600 see . Usy quadrin S=9, 9=1t.. Q = 0.5 x 600 C φ. = 300 C

"It is the potential difference between the ends of the wice which makes the electric changes (or certain) to glow in the worre." The electric certaint in the glow of changes (called electric) in a condensor such as a mored wire.

J= 9

Electric Potential

The electric potential (or potential) at a point in an electric field is defined as the work done in moving a unit positive change from inpinity to that point.

Potential in denoted by the symbol V and H unit is volt.

A potential of 1 volt at a point mean that I juste of cools on done in moving 1 cen't positive change from infinity to that point.

Potential Allerence:

The difference in electric potential between low points in the potential difference.

The potential difference between two points in an electric circuit is defined as the amount of work done in mounty a cent charge from one point to the other point.

Potential Difference(V) = work Dune (W)

Quantity of charge moved (Q)

Si unit is volt (V)

Therefore, 1V = 1 Joule, 1V = 1 JC-1 1 coulomb

the potential difference is measured by means of an instrument called the Voltmeter which always connected in perallel.

Vultege in the other name for potential difference.

across a conductor. Dous) A cell or a battery.

6) Now much work is done in moving a charge of 26 across two points having a potential difference 12 v? ANS) Potential Difference V= 12 V Amount of change q = 20. The amount of work done w - v9 = 12 x2] = 247 (a) How much work is done in moving a charge of 2 coulombs from a point at 118 volts to a points at 128 volts? AMS) Potential Difference V = 128 - 118 V. = 10 Yalts Charge moved 9 = 2 coulombs work done w= VX9 (-: V= 0 = 10x2 W = 20 Jacks. a) How much energy a given to each coulomb of charge passing through a 6 V bettery? ANN) chape g = 1 c (each coulomb) Potential Willesen V= 6 V (60 Bootlesy) The energy will be exect to the work done. .: Work Done, w = 6x/ J Hera, the energy given to each coulomb if those is 61.

(5)

Circuit Dlagram
It is often convenient to draw a schematic diagram,
in which different components of the circuit are represented by the symbols conveniently used. Conventioned symbols used to represent some of the most commonly used electrical components are given below.
by the symbols conveniently used. Conventioned symbols
used to represent some of the most commonly used
electrical components are given below.
(1) cell: + F (2) Badery of two cells: ++ HF
(3) Connecting wire: — (4) A wire joint:
and was the compression of the control of the contr
(5) wires crossing without joing:
(2) Resistor: - MWW- 8) Variosle Resistence: - MWW- or - MWM
(7) Resistor:
9) Ammeter: — +(D) Voltmeter -(V)
1) Plug key or switch (gree) = ()
12) Plug key or switch (closed): (0)
Fig. 1 8 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1

OHM'S LAW Ohm's lew gires a relationship between current and potential difference. According to ohm's law;

"At constant temperature, the current flowing through a conductor in directly proportional to the potential difference across to ends!" If I is the current flowing through a conductor and I is the potential difference (or voltage) across its ends, then according to Ohm's law: 1 × V (at constant temperature) When R D a compant could "rundana" of the conductor. We can say V = R (CONDENT) called remodence. Potential Difference = consent (called resistance). Current PCO $C = \frac{V}{R}$, $2 \times V$, $2 \times \frac{1}{R}$ (i) The current is inventy proportional to putational difference (ii) The current is invently proportional to resistance. Resistance of a Conductor The property of a conductor due to which it opposes the flow of current through it is called resistance. The resistance of a conductor depends on length, thickness, nature of moderial and temperatures of conductor.

Si unit in ohm (12)

I ohm is the resistance of a conductor such that when a potential difference of I volt is applied to 14 ends, a current of I ampere flows through it.

The current through a resistor is inversely porportioned to its resistance. If the resistance is doubled the current gets halved.

A component used to regulate current without chanity
the voltage source is called varieble resistance. A device
called theostat is often used to change the resistance
in the circuit. in the circuit.

> Motion of electrons in an electric circuit constitutes an electric current. The motion of electrons through a conductor is retarded by its resistance.

> A component of a given size that offers a low resistance to a good conductor.
> A conductor having some appreciable resistance to called resistor.
> A component of identical size that offers a higher resistance to a poor conductor. An invelseor of the same size offers even higher resistance.

Factors affecting the Residence of a conductor

(1) length of the conductor is directly propositional to the length. Rx L. When the length of a write or doceded, its resistance also gots directly and if the length of a write is doceded. In halved, then its resistance also gots halved. Thus, a long wite how more resistance and a short with how len resistance.

(2) A rea of Cross-Section of the Conductor:

The Residence of a conductor is inversely propositioned to its area of cross section. Rolf. This, when the area of cross section of wire or doubled, its residence gets halved, and if the the erea of cross section if wire or halved, then its residence will get doubled. A thick when has less resistance and a thin wise has more resistance.

(3) Notice of Material of the Conductor:

Some materials have low resistance and others have high resistance. We find that nichrome wire is about 60 times more resistance than copper wire of some light.

The restitance of all pure metals increased on raising.

The temperature; and decreases on lowering the temperature.

Resistivity: RXL, RXA, RXL, R=PXL

g(rho) is constant known as resultivity. $p = \frac{R \times A}{L}$ so m

(1) Potential difference between two points of a wise carrying 2st certient is 0.1 V. Calculate the seoistence between these points.

PANS) Enver: 3 = 2 + V = 0.7

llong Ohm's law V = IR ... $R = \frac{V}{3} = \frac{0.1}{2} = 0.05$

Residence R = 0.05 2 (ohm).

(2) A simple electric execuit has a 24 V battery and a registor.

of 60 ohms. What will be the current in the circuit?

Given: Potential difference V = 24 with. Remodera R= 60 ohm.

May ohmy law V=IR, $I=\frac{V}{R}=\frac{24}{60}=0.44$

: Current B = 0:4 A

(3) An electric iron drows a current of 3.4 A from the 220 V Supply line. What current will their electric iron draw when connected to 110 V supply line? PMJ) Griven: Eurosof 2 = 3.4 A

Potential Difference V = 220 V

May ohmy law V=1R R= Y = 220 = 64.752

Now, Potential Difference V = 110 VResistance R = 64.7 SZ

CLERRENT B = N = 110 = 1.7A

.: Current will be 1.7 A BU'

(4) A copper wire of legth 2 m and area of C1085-Jeethop 1.7 ×10 6 m² has a resistance of 2×10 2: Calculate the
1.7 ×106 m2 has a resistance of 2×102 D2: Calculate the
resistivity of copper. Ans) Resistivity, $f = \frac{R \times A}{L}$
ANS) Resistruity, $f = RXA$
Given $l = 2m$ $A = 1.7 \times 10^6 \text{ m}^2$ $R = 2 \times 10^2 \text{ J2}$
Resistivity $f = 1.7 \times 10^{-8} \text{ 2.m}$
(6) A copper wise has a diameter of 0.5 mm and resultivity of 1.6 × 10.8 D.m. (a) What will be the length of this wise to make its resident 105. (b) How much does the residence change if the diameter of doubled?
d 1.6 × 108 D.m.
(9) What will be the leayth of this wire to make its next Pan 105.
(6) flow much dow the residence change if the diemoter of doubted?
prove) (9) die of will = 0.5 m, radia = = 0.3 = 0.25 mm
Area of cross-section A = 712 = 3.14x 0-10x0-10x106
A = 0.1964 x06 m2
Area of cross-section $A = \pi 1^2 = 3.14x \text{ or } \text{in} $
Reststance $R = 1052$
Reststance $R = 10D2$ leggh, $L = ?$ $f = \frac{R \times A}{L} =)$ $l = \frac{R \times A}{J}$
legth, $l = 10 \times 0.1964 \times 10^6 = 1964 = 1227 \text{ m}$ $1.6 \times 10^8 \qquad 16$
1.6×10-8
(b) Resolute of wise is inversely proportioned to guess of deemed-
(b) Resolving wise is inversely proposition to gues, of elements is doubted. Rix $\frac{1}{A}$, $Rx = \frac{1}{d^2}$. When diamets is doubted.
Renstano will be (1)2 a (1) the one fouth.
(2) 19

(11)

(6) P 6 D2 resordance wise is doubled up by folding. Calculate the new resistance of the wife. SUP) GIVEN: RESTOREM R = 652. $R = \frac{JXL}{A} \Rightarrow \frac{JXL}{A} = 6$ When wire is doubled by folding legth will be halred and area will be doubled: 1= 1 p' = 2p R'= PXR' = PXR = 6 = 1.3 52 ... New Rembero R'= 1.5 D. (2) How much current will an electric bulb drew from is 1200 JZ? (b) How much current will an electric heater will draw from a 220 V sound, if the resistance of the heater will is 10052?

And Given V = 220 V R = 1200 JZ (Bulb)

While will have V = 1R : $D = \frac{V}{R} = \frac{220}{1200} = 0.18 \text{ A}$ (Hearter) (8) The potential difference between the terminal of an electric heater in 60 V when it draws a certain of 4 A from the societa. What certain the heater draw if the potential difference in increased to 120 V?

Now I = U = 120 = 8 A paw.

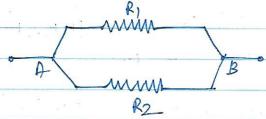
(12)

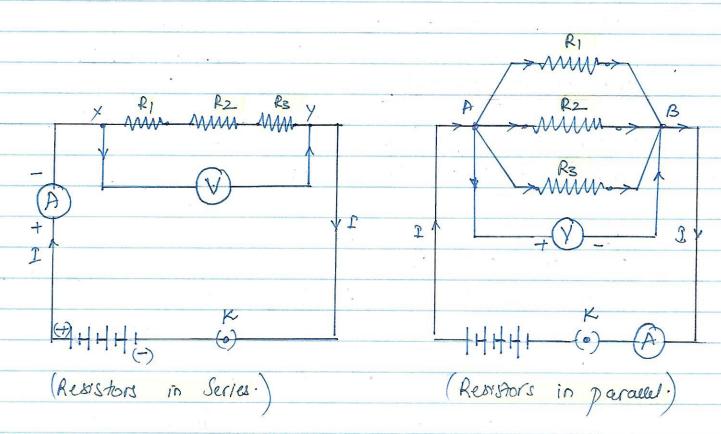
(9) Resistance of a model wise of legth lm in 26D at $20^{\circ}C$ by the diemeter of the wise in 0.3 mm, what will be resistivity of the model at that temperature?

Product R = 26D L = lm dia $d = 0.3 mm = 0.3 \times 10^3 m$ $A = \frac{\pi d^2}{4} = \frac{3.14 \times 3\times3\times10^8 \text{ m}^2}{4} = \frac{28.26 \times10^9 \text{ m}^2}{4}$ f = 183.65x108 2.m = 1.84 ×10 6 J.m. Bo. (form table 12.2, this is the restissivity of marganese) (10) A 4-JZ resistance wire in doubled on it. Colculate the new residence of the curre.

First R = 452 When wire in doubled on it. $R = P + \Rightarrow R' = S + = F + = \frac{1}{2x2} = \frac{1}{4A}$ $\ell' = \frac{R}{4} = \frac{4}{4} = 102$.

(13)


Combination of Resistances (Resistance of a system of Resistors)


The reststance can be combined in two ways:

When two (or more) renitances are connected and to end consecutively, they are said to be connected in serie.

R1 R2,

When two (or more) resistances are connected between the same two points, they are seed to be connected in parallel (because they become parallel to one another).

Resistors in Series

According to the law of combination of resistence in veries? The combined resistance of any number of peristances connected in series in your to the sum of the individual resistances. connected in serie, then their combined residence Ris given by: R = R1+R2+R3+..... X R, P g R2 Ps Motel potential, V = V1+V2+V3 lesing ohmy low V=1R +HHH U1=1R, V2=1R2, V3=1R3 IR = IR, + IR2 + IR3 (combined nextrana is more) or R = R1 + R2 + R3 Resistors in Perallel According to the Cow of X · combination of resistant in parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \cdots$ $\hat{I}_1 = \frac{V}{R}$ $\hat{I}_2 = \frac{V}{R_2}$ Potal cerrosi I= 1, + 12+3+ ... $f_3 = \frac{V}{\ell_3}$ $V = 1R \qquad P = \frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2}$

(Combined revistance is less.)

 $\frac{1}{R} = \frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3}$

(H)

Mote 3

() In a series circuit the cernest is constant the roughout the circuit.

Thus it is improved to connect an electric bulb and an electric heater in series, because they needs currents of widely different rates.

(2) Another major duadrantages of a series circuit is their when one component fails the circuit is booken and none

of the component worker.

(3) On the other hand, a parallel circuit divides the

current through the electrical gadgets.

(h) The total resistance in a parcellel circuit is decreased.

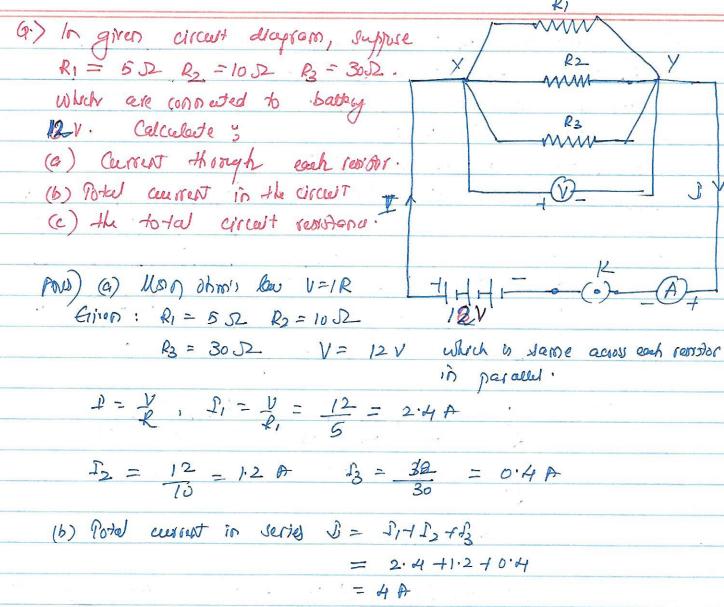
This is helpful when each godget has different residence and requires different current to operate properly.

(b) An eletric temp, whose resistance is 20 52 and a conductor of 452 resistance are connected to a 60 Baday. Calculate:

(a) the total resistance of the circuit

(b) the current through the circuit

(e) the potential difference across the electric lamp and conductor.


ANS) (9) Residence of learn p $R = 20 \Omega$ Residence of conductor in serie $R = 4\Omega$ Pose residence in series. $R = R_1 + R_2 = 20 + 4 = 24 \Omega$

(b) Poled potential difference V = 6VCurrence S = 2Many others law $J = \frac{V}{R} = \frac{6}{24} = 0.25 \text{ A}$

(e) V_1 , potential difference expossion $p = 20 \times 0.2T = 5 V$ V_2 potential difference exposion conduct $= 4 \times 0.0T = 1 V$. $V_3 = V_1 + V_2 = 5 + 1 = 6 V$.

9) (i) which among into and mercury is a bester conductor?
(ii) which material is the best conductor?
(i) Resistivity of 18:0 = 10 × 10 8 Ω ·m $f = R \times A$
Resistivity of merceany = 94 × 108 52 m = RXA
Iron is better conductor.
(i) We know that a good conductor of electricity should have a
low restistivity and a poor conductor of electricity will here
a high resistivity. Silver how the lowest resistivity of
(i) We know that a good conductor of electricity should have a low restshirty and a poor conductor of electricity will have a high resistivity. Silver how the lowest resistivity of 1.6 ×10 ⁻⁸ D. m. So, silver is the best conductor.
6) Draw a schemose diceptor of a circuit consisting of
a boosery of three cells of 2V each, a 552 resistor,
an 8 or residor and 12 or resistor and a plug key, all connected in seijes. But voll moder across 1202 resistor.
all connected in Selies. But vollanda aeross 122 monstor.
. PM) Calculate reader in voltander and aminder in series.
Rated potential differ = 3×20
$=6V. \qquad -1 \qquad R_1 \qquad R_2 \qquad R_3$
Catalog ready in yold moder and amonder in series. Rotal potential differ = 3×21/ = 6V. R1 R2 R3 (i) Reading in amonder
R1 = 552 R2 = 852 R8 = 1252
Rotal R= R1+R2+R3 THH= (0)
R = 5 + 1 + 12 = 25 D = 60
$V = 6V \qquad D = \frac{V}{R} = \frac{6}{25} = 024A$
Ammeter will show reading of 0.24A.
(ii) Reading in Voltmeter
P = 0.24 V R = 12 SZ V = 1e = 0.24×12 = 2:88V
Control of the second of the s
: Voltmeter reachy is 2.88 V.

.

(c) Potel resorra in paraelle
$$\frac{1}{R} = \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$$

$$\frac{1}{2} = \frac{1}{5} + \frac{1}{10} + \frac{1}{30} = 0.2 + 0.1 + 0.03 = 0.333$$

$$\frac{1}{2} = 0.333 \quad R = \frac{1}{0.333} \Rightarrow R = 352 \text{ ph}$$

6.) In given fig R1 = 10D R2 = 40D R3 = 30D R4 = 20D R5 = 60D and a 12 V backey in connected as shown. Cellulate: (a) Potal removano in the circuit (b) the total current flowing in circult - 120 ANW) (a) $\frac{1}{R^1} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{10} + \frac{1}{40}$ 1 = 0.1 + 0.025 = 0.125 P' R'= 1 = 852 Similary 1 = 1 + 1 + 1 = 1 + 1 + 1 = 1 + 1 + 1 = 30 + 20 + 60 1 = 0.03+ 0.05+ 0.0167 = 0.1 $R'' = \frac{1}{0!} = 10 \Omega$

Potel restance in circuit R= RHR" = 8+10=1852 par.

(b) Usy othery bow
$$V=1R$$
 , $I=\frac{V}{R}=\frac{12}{18}=0.67A$ Arr

- Q. Judge the equivalent resistance when the following are connected in parallel (i) 1Ω and $10^6 \Omega$ (ii) 1Ω and $10^3 \Omega$ and $10^6 \Omega$.
 - Ans. (i) When a number of resistance are connected in parallel, then their combined resistance is less than the smallest individual resistance. Therefore, equivalent resistance will be less than 1Ω .
 - (ii) In this case, also the equivalent resistance will be less than 1Ω .
- Q. An electric lamp of 100Ω , a toaster of resistance 50Ω , and a water filter of resistance 500Ω are connected in parallel to a 220 V source. What is the resistance of an electric iron connected to the same source that takes as much current as all three appliances, and what is the current through it?
- **Ans.** Here, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$, $R_3 = 500 \Omega$

Equivalent resistance = R

Resistors are connected in parallel.

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{1}{R} = \frac{1}{100} + \frac{1}{50} + \frac{1}{500} \implies \frac{1}{R} = \frac{5+10+1}{500}$$

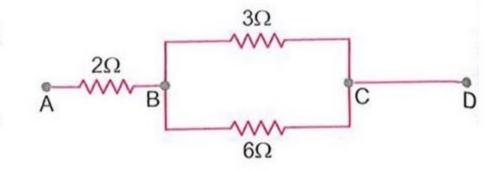
$$\frac{1}{R} = \frac{16}{500} = \frac{4}{125} \implies R = \frac{125}{4}\Omega$$

Current through all the three appliances, $I = \frac{V}{R} = \frac{220 \times 4}{125} = 7.04 \text{ A}$

Since the electric iron connected to the same source that takes as much current as all the three appliances. So

Resistance of the electric iron = $\frac{125}{4}\Omega = 31.25 \Omega$

Current through the electric iron = 7.04 A


- Q. What are the advantages of connecting electrical devices in parallel with the battery instead of connecting them in series?
- Ans. (i) In parallel circuit, if one electrical appliance stops working due to some defect, then all other appliances keep working normally. In series circuit, if one electrical appliance stops working due to some defect, then all other appliances also stop working.
 - (ii) In parallel circuits, each electrical appliance gets the same voltage as that of the power supply line. In series circuit, appliances do not get the same voltage as that of the power supply line.
 - (iii) In the parallel connection of electrical appliances, the overall resistance of the household circuit is reduced due to which the current from the power supply is high. In the series connection, the overall resistance of the circuit increases too much due to which the current from the power supply is low.
- Q. How can three resistors of resistance 2Ω , 3Ω and 6Ω be connected to give a total resistance of (i) 4Ω , (ii) 1Ω ?
- Ans. (i) As the total resistance (equivalent resistance) is 4Ω , the 6Ω resistor cannot be in series. So, it must be in parallel with some other resistors.

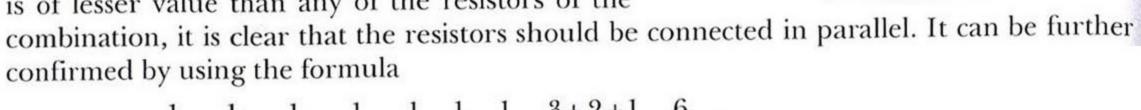
In parallel connection, the equivalent resistance (4 Ω) has to be less than all the resistances.

So, the resistors of 2 Ω and 3 Ω cannot be in parallel at one time with 6 Ω .

So, the resistors have to be in a mixed combination. Let us consider the combination shown in the figure.

The equivalent resistance between B and C (which are in parallel)

 3Ω


 6Ω

$$= \frac{3\Omega \times 6\Omega}{3\Omega + 6\Omega} = \frac{18\Omega}{9\Omega} = 2\Omega$$

The resistance between A and D = $2 \Omega + 2 \Omega = 4 \Omega$.

So, the combination shown in the figure is true.

(ii) Here, $R_1=2\Omega$, $R_2=3\Omega$, $R_3=6\Omega$ and $R=1\Omega$ Since the equivalent resistance of the combination is of lesser value than any of the resistors of the

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{3+2+1}{6} = \frac{6}{6} = 1$$

i.e.,

$$R = 1$$
 ohm.

Therefore, resistors should be connected in parallel.

- What is (i) the highest, (ii) the lowest total resistance that can be secured by combinations of Q. four coils of resistance 4 Ω , 8 Ω , 12 Ω , 24 Ω ?
 - (i) The highest can be secured by series combination and is equal to Ans.

$$R = 4 \Omega + 8 \Omega + 12 \Omega + 24 \Omega = 48 \Omega$$

(ii) The lowest total resistance can be secured by parallel combination, which is given by

$$\frac{1}{R} = \frac{1}{4} + \frac{1}{8} + \frac{1}{12} + \frac{1}{24} \quad \Rightarrow \quad \frac{1}{R} = \frac{6+3+2+1}{24}$$

$$\Rightarrow \frac{1}{R} = \frac{12}{24} = \frac{1}{2} \qquad \therefore R = 2\Omega$$

$$R = 2 \Omega$$

Heating Effect of Courent When an electric current is passed through a high resistance wise seasone very hot and produces heat. This is called the heating effect is obtained by the transformation of electrical energy into heat energy. The role of 'resistance' in electrical circuits in similar to the role of 'friction' in mechanics. When an electric charge a moves against a jotential difference U, the amount of work done or given by: $W = Q \times V \qquad \qquad (1)$ we know Q = fxt - (2) using ohm's law V=1R - (3) .: W = IX+XIXR w = p2xext y Assuming electrical work done is converted into heat energy

Heart producted, $H = I^2 \times R \times t$ Joseles.

This is known as "Joseless law of hearing." According to Joule's law of heating $(H = I^2 \times R \times t)$, heat produced in a coire is directly propostioned to ?

(i) Square of current (I^2) , $H \times I^2$ (ii) Residence of coire (R), $H \times R$ (iii) time (t), for which current is passed. HX +

Applications of the Heading Effect of Consent.

- (1) The hading effect of current is unitsed in the cooleing of electrical heating appliances such as electric irin, electric kettle, electric trainer, electric oven, soom heaters, water heaters (geysens) ete:

 Pil these heating appliances contain coils of high resoftence wire made of nichorme alloy.
- (2) The heating effect of electric central in utilised in electric bueb (electric (amps) for producing light. When electric current passes through a very thin, high resistance tungsten filament of an electric bueb, the filament becomes white hot and emits light.

 Tungsten metal is used promaking the filaments of deeling buebs because it has a very high meeting point (of 3350'c)
- (3) The heating effect of electric current is whised in electrical luse for protecting howehold writing and electrical applicance. A fuse or a short leagth of a thin their plated copper wire having low making point.

 When the current in a household decord circuit rises too much due to some reason, then fuse corre gets heated too much, meets and breaks the circuit.

 Thus, an electric fuse to a resp important apprication of the heating effect of centrest.

Electric Power

When an electric current flows through a conductor, electric energy is used up and we say that the current is dring work. We know that the rate of doing work is called power. So electric - power is the electrical work done per unit time.

Flestic Power = Electric work done

 $P = \frac{\omega}{t}$ $|k\omega| = (000 \text{ wats})$ $|k\omega| = 1 \text{ J}$

Electric power is the rode at which electrical energy is consumed. Electric power is the electrical energy consumed per second.

Formula for Calculating Electric Power.

Power = work Done p= w Time Paken

WOIR door W = VXIXt Joule.

P = W = VXIXT = VXI

.: $P = V \times I$ V = Potential Difference $\widehat{J} = Ceenrot in amperes.$

Electrical power = VoHage X Custent.

(i) V = IR : $P = IR \times I$, $P = I^2R$

(ii) V = IR $P = V \times V \Rightarrow P = V^2$

1 wast = 1 vot x 1 pmpore = 1 VA

Commercial ant of electrical energy: Kilowest Hour.

"One kilowate - hour is the amount of electrical energy consumed when an electrical appliance having a power rasing of 1 kilowater is used for 1 hour".

1 kew = 1000 water

| kwh = | kilowat for | hour $= 1000 \times 3600 \quad wat \cdot second$ $= 3.6 \times 10^6 \quad wat \cdot second$ $| kwh = 5.6 \times 10^6 \quad Joale (y) \qquad [-.'|wat = 1Joale]$ [see of]

the transfer of the second second

(26)

(Questions) (1) A potential difference of 250 volts à applied across a remplence of 500 SZ in an electric 1000. Calculate (1) current (1) heat energy produced in joule in 10 second. POUS) (1) V = 250 V R = 500 SZ R = V = V = 250 = 0.5 A R = 500 SZ: Current 3 = 0.5 A (ii) Head theray = 12Rt = 0.5 X 0.5 X 500 X 10 = 25 x 500 X/O H = 1250 Joul. (2) Calculate the heat produced when 96,000 condoms of charge is transferred in 1 hour through a potential difference of 50 yoths.

Pros.) B = 96,000 C t = 60 × 60 see (1 h = 60× 60 see) Current $L = \frac{6}{t} = \frac{960p}{60 \times 60} = \frac{80}{3} = 26.67 \text{ p}$ E = 26.67 A. V = 1R V = 50 V = 1R V = 50 V = 1R

 $R = 1.87 \Omega$ $R = 50 \div \frac{80}{3} = 50 \times \frac{3}{8} = 15$

Head produced H= I'Rt

= 26.67× 26.67× 1.87× 60×60

= 4788400 J = 4788.4 KJ

H= 12R+= 80,80 x 15 x 60x60 = 41800 KJ

(3) Two conducting wills of the same mosterial and of great length and equal diameters are first connected in series and then in parallel in a circuit across the same potential difference. What would be the ratio of heat produced in series and parallel combination. pas) Let the resistance of each one of the two wires be to. (i) When the two restance wires, each having a restance me, are connected in series, then: Combined residence, R1 = 22. W V be the potential difference then using ohm's law V=1R S1=V=V R 22 Heat produced $H_1 = I^2Rt = V^2 \times 2n \times t$ $H_1 = v^2 \times t$ (ii) When connected in paraeled, then $\frac{1}{R_2} = \frac{1}{n} \cdot \frac{1}{n} = \frac{2}{n} \Rightarrow R_2 = \frac{2}{n}$ $R_2 = \frac{\chi}{2} \qquad \tilde{I}_2 = \frac{V}{R_2} = \frac{2V}{\chi}$ Head foodled to = 52 xR2xt - (20) xxxx $H_2 = \frac{2v^2x}{}$ $\frac{H_1}{H_2} = \frac{v^2xt}{2n}, \frac{2v^2xt}{n} = \frac{v^2xt}{2n} \times \frac{n}{2v^2xt} = \frac{1}{4}$

(28)

41: H2 = 1:4

(4) An electric inon consumes energy at a rate of 840 W when hearing is at the maximum rate and 360 w when the hearing is at the minimum. Phe voltage in 220 V. What are the aurient and the resistance in each case?

$$Pow^{4} = PJ$$
 : $J = \frac{P}{V} = \frac{840}{220} = 3.827$

$$V = 1R$$
 : $R = \frac{y}{3} = \frac{220}{3.82} = 57.652$

$$3 = 3.82 A$$
 $R = 57.6 D$

(b) Power
$$P = 360 \text{ W}$$
 $V = 220 \text{ V}$
 $S = \frac{P}{V} = \frac{360}{220} = 1.64 \text{ A}$

$$R = V = \frac{220}{3} = 134-1552$$

(5) 100 J of heat are produced each second in a 452 resistance. Find the potential difference across the resistor.

ANS) H = 100 J R = 452 V = ?

$$H = V^2$$
 $V^2 = HXR = 100 \times 4 = 400$
 $V = \sqrt{400}$
 $V = 20 V$

(6) Why does the cord of an electric header not glow while the heating element does?

PMW) The cord of the electric heater is made of copper.

It does not glow belowse negligible heat is produced in it by the passing current due to its extremely low remarkance.

(29)

The heating element of an electric heater is made of nichrome. It glows because large amount of heat is produced in It by the passing electric current dece to His high reportance.

. (7) An electric 1100 f_0 resordence 20 52 takes a current of 5A. Calculate the heat developed in 30 see.

BMS) R = 20 52 J = 5A f = 30 see

 $H = 1^2 Rt = 5xSx 20x 30$ H = 15000 J = 15 KJ.

(8) An electric beets is rooted 220 V and 100 W. When it is operated on 110 V, Calculate the power.

 $P = \frac{V^2}{R}$, $R = \frac{V^2}{P} = \frac{22px^22p}{19p} = 22x^22$

 $p^{1} = \frac{V^{2}}{R} = \frac{1/0 \times 11/0}{R} = \frac{100}{22 \times 2/2} = \frac{25 \text{ W}}{4} = \frac{100}{25 \times 11/2}$ $p^{1} = 25 \text{ W} + 25 \text{ M}$

(9) A refrigerator having a nower of 300 w operates for
10 hovers a day. Calculate the cost of electrical energy
to operate it for a month of 30 days. The rate of
electrical energy is so. 3.40 per kwh. AMLS) F = 350W Pine, t = 10×30 = 300 h P = 350 = 0.35 kw. E = PXt = 0.35 x 300 kwh E = 105 kwh Cost of 16wh of electricity = R. 3.40 ×105 = R1. 357. (10) A bulb is rated at 200V - 100W. What is the reststance? Five such bulks burn for 4 hours. What is the electrical energy consumed? Calculate the cost if the rate in W. 4.60 per unit.

PMU) (a) Calculation of Resistance $P = \frac{V^2}{R}$, $R = \frac{V^2}{R}$ $R = 200 \times 2000 = 400 S2$

(b) Energy consumed: E = PXt, $E = 100 \times kW$: E = 0.1 kWFreigy consumed by one buels = 0.1 x4

= 0.4 kWh

Energy consumed by 5 buels = 0.4 x5

= 2 kWh

(c) Coot of elevorial energy:

Coot of 1 units = 2. 4.60

Cont of 2 units = 4.60 x 2

= 2. 9.20

(11) An electric heater draws a current of 10 A from a 220 V supply. What is the cost of coning the heater for 5 horen everyday for 30 days if the cost of 1 unit (1 kwh) is 2.5.20?

Pms) J = 10P V = 220 U Power $P = PJ = 220 \times 10 = 2200 W$ P = 2.20 kW ——(1)

Energy consumed, E= PX+

= 2.2 × 5 kwh

Energy consumed in 1 day = 11 kwh

Energy consumed in 80 days: 11× 30

- 330 kwh (or 330 kn/+)

Cost of 1 unit = 2.5.20Cost of 330 unit = 5.20×330 = 2.1716

(2) An elever bieb y connected to a 220 V generation.
The current is 0.50 A. What is the jower of the beels?
pors) P= V3 = 220×0.5 = 110 1/s = 110 W.
30 does at R. 3 per kwh?
(13) An electric refrigerator rated 400 ω operates I hourslay. What a the cost of the energy to operate it for 30 doesnot at Ri. 3 per kah. Pow $P = 400 \omega$ $f = 8 hour [day]$
Energy cowamed, E = PX+
= 400x 8 kwh
Energy consumed in 1 day = 3.2 kWh Energy consumed in 30 dy = 3.2 x30 kWh
Energy consumed in 30 deg = 3.2 x 30 kWh
= 96 lewh (or 96 unity)
/
Cost of 1 unit = R.3
Cost of 96 unit = $\mathbb{B} \times 96$
= R. 288
(4) What determines the rate at which energy is delirered by a current? BN - Electric Power.
delirered by a current? BN - Electric Power.
(5) An electric motor takes 5 A from a 220 V Gre. Determine the power of the motor and the energy consumed in $2A$. P= $VJ = 220 \times 5 = 1100 W = 1.1 km$
were mine the power of the moon and the energy
corpuned in 2h.
$p = VU = 220 \times 5 = 1/00 W = 1/1 (cw)$
Energy consumed $E = PX + = 1.1 \text{ tex} x 2h$ $= 2.2 \text{ texh}.$
= 2-2 t c c c c c c c c c c c c c c c c c c

(33)

- When a 12 V battery is connected across an unknown resistor, there is a current of 2.5 mA in the circuit. Find the value of the resistance of the resistor.
- **Ans.** Potential difference, V = 12 V

Current, $I = 2.5 \text{ mA} = 2.5 \times 10^{-3} \text{ A}$

We know that

$$V = IR$$

or,

$$R = \frac{V}{I} = \frac{12}{2.5 \times 10^{-3}} = 4.8 \times 10^{3} \,\Omega = 4.8 \,\mathrm{k}\Omega$$

- Q. 9. A battery of 9 V is connected in series with resistors of 0.2 Ω , 0.3 Ω , 0.4 Ω , 0.5 Ω and 12 Ω respectively. How much current would flow through the 12 Ω , resistor?
- Resistors are connected in series. Ans.

So, equivalent resistance

$$R = 0.2 \Omega + 0.3 \Omega + 0.4 \Omega + 0.5 \Omega + 12 \Omega = 13.4 \Omega$$

Potential difference, V = 9 V

Current, through the circuit,

$$I = \frac{V}{R} = \frac{9}{13.4} = 0.67 \text{ A}$$

- Q. 10. How many 176 Ω resistors (in parallel) are required to carry 5 A on a 220 V line?
- Current, Ans.

$$I = 5 A$$

Potential difference,

$$V = 220 \text{ V}$$

Resistance of parallel circuit,
$$R = \frac{V}{I} = \frac{220}{5} = 44 \Omega$$

Let no. of resistors = n

In parallel,
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + n \text{ times}$$

$$\frac{1}{44} = \frac{1}{176} + \frac{1}{176} + \dots n \text{ times}$$

$$\frac{1}{44} = \frac{n}{176}$$

$$44 176$$

$$n = \frac{176}{44} \text{ or } n = 4$$

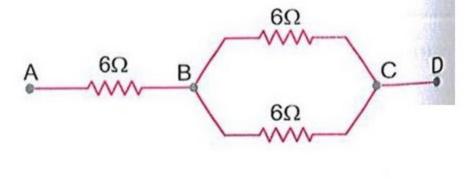
Number of required resistors = 4.

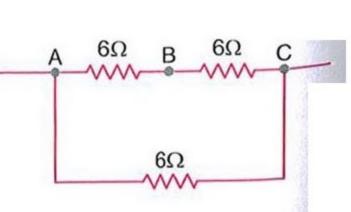
- Show how you would connect three resistors, each of resistance 6 Ω , so that the combination Q. 11. has a resistance of (i) 9Ω (ii) 4Ω .
 - (i) In order to get a resistance of 9 Ω , We connect the given resistors (each of resistance of 6 Ω) Ans, in the following way.

Resistance between B and C

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{6}$$

$$\frac{1}{R} = \frac{2}{6}$$


$$R = 3 \Omega$$


Resistance of the combination = $6 \Omega + 3 \Omega = 9 \Omega$

(ii) In order to get a resistance of 4Ω , we connect two resistors in series and third in parallel as shown in figure.

Resistors AB and BC are in series, therefore,

$$R_S = 6 \Omega + 6 \Omega = 12 \Omega$$

Now, R_s is parallel with the third (6 Ω).

 \therefore Equivalent resistance of combination (R_p) is given by

$$\frac{1}{R_p} = \frac{1}{6} + \frac{1}{12} = \frac{2+1}{12}$$

$$\frac{1}{R_p} = \frac{3}{12} = \frac{1}{4}$$

$$R_p = 4 \Omega$$

- Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 W. How many lamps can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A?
- **Ans.** Potential difference, V = 220 V

Power of each bulb, P = 10 W

Resistance of each bulb,
$$R = \frac{V^2}{P} = \frac{220 \times 220}{10} = 4840 \Omega$$

Total resistance in the circuit,

$$R' = \frac{V}{I} = \frac{220}{5} = 44 \Omega$$

Let n be the number of bulbs to be connected in parallel to obtain resistance R'.

$$\frac{1}{R'} = \frac{1}{R} + \frac{1}{R} + \dots n \text{ times}$$

$$\frac{1}{R'} = \frac{n}{R}$$

$$n = \frac{R}{R'} = \frac{4840}{44} = 110$$

Required number of bulbs = 110

- Q. 13. A hot plate of an electric oven connected to a 220 V line has two resistance coils A and B, each of 24 Ω resistance, which may be used separately, in series or in parallel. What are the currents in the three cases?
- Potential difference, V = 220 V

Resistance of each coil, $R = 24 \Omega$

Case I: When coils A and B are used separately, current through each coil,

$$I = \frac{V}{R} = \frac{220}{24} = 9.2 \text{ A}$$

Case II: When coils A and B are connected in series, the equivalent resistance in the circuit.

$$R_s = 24 + 24 = 48 \,\Omega$$

Current,
$$I = \frac{V}{R_s} = \frac{220}{48} = 4.6 \text{ A}$$

Case III: When coils A and B are connected in parallel, the equivalent resistance (R_p) is given by

$$\frac{1}{R_p} = \frac{1}{24} + \frac{1}{24} = \frac{2}{24}$$

$$R_P = 12 \Omega$$

Current,
$$I = \frac{V}{R_b} = \frac{220}{12} = 18.3 \text{ A}$$

- Q. 14. Compare the power used in the 2 Ω resistor in each of the following circuits:
 - (i) a 6 V battery in series with 1 Ω and 2 Ω resistors, and (ii) a 4 V battery in parallel with 12 Ω and 2 Ω resistors.
 - Ans. (i) Equivalent resistance of 1Ω and 2Ω in series, $R = 1 \Omega + 2 \Omega = 3 \Omega$ Potential difference, V = 6 V

Current,
$$I = \frac{V}{R} = \frac{6}{3} = 2A$$

Current in series circuit is same.

 \therefore Current in 2 Ω resistor = 2 A

Power in 2 Ω resistor, $P = I^2 R = 2^2 \times 2 = 8 \text{ W}$

(ii) Potential difference across 2Ω resistor = 4 V

Power,
$$P' = \frac{V^2}{R} = \frac{4^2}{2} = 8 \text{ W}$$

$$P: P' = 8 W: 8 W = 1:1$$

- Q. 15. Two lamps, one rated 100 W at 220 V, and the other 60 W at 220 V, are connected in parallel to electric mains supply. What current is drawn from the line if the supply voltage is 220 V?
 - Ans. We know that

$$P = \frac{V^2}{R}$$

:.

$$R = \frac{V^2}{P}$$

Resistance of 1st lamp,

$$R_1 = \frac{V^2}{P} = \frac{220 \times 220}{100} = 484 \ \Omega$$

Resistance of 2nd lamp,

$$R_2 = \frac{220 \times 220}{60} = \frac{2420}{3} \Omega$$

Since, two lamps are connected in parallel, so its equivalent resistance is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$= \frac{1}{484} + \frac{3}{2420} = \frac{8}{2420}$$

$$R = \frac{2420}{8} \Omega$$

Current drawn from the line

$$I = \frac{V}{R} = \frac{220 \times 8}{2420} = \mathbf{0.73 A}$$

- Q. 16. Which uses more energy, a 250 W TV set in 1 h or a 1200 W toaster in 10 minutes?
 - Ans. Energy used by TV set

$$E_1 = P \times t$$
= 250 W × 1h = 250 Wh

Energy used by toaster,

$$E_2 = P \times t$$

$$= 1200 \times \frac{10}{60} = 200 \text{ Wh}$$

Thus, TV set in one hour uses more energy than the toaster uses in 10 minutes.

Q. 17. An electric heater of resistance 8 Ω draws 15 A from the service mains in 2 hours. Calculate the rate at which heat is developed in the heater.

Ans. Here,
$$R = 8 \Omega$$

 $I = 15 A$

The rate at which heat is developed is power, $P = I^2 R$

Power =
$$\frac{\text{Heat developed }(I^2Rt)}{\text{Time taken }(t)}$$

= $15 \times 15 \times 8 = 1800 \text{ J/s.}$

- Q. 18. Explain the following:
 - (i) Why is the tungsten used almost exclusively for filament of electric lamp?
 - (ii) Why are the conductors of electric heating devices, such as bread-toasters and electric irons, made of an alloy rather than a pure metal?
 - (iii) Why is the series arrangement not used for domestic circuits?
 - (iv) How does the resistance of a wire vary with its area of cross-section?
 - (v) Why are copper and aluminium wires usually employed for electricity transmission?
- Ans. (i) Pure tungsten has a high resistivity and a high melting point (nearly 3000°C). When an electric current is passed through the filament, the electric energy is converted to heat and light energy due to the heating of the filament to a very high temperature. Due to the high melting point of tungsten, the filament does not melt.
 - (ii) The resistivity of an alloy is generally higher than that of its constituent metals. Alloys do not oxidise (burn) readily at higher temperatures. Therefore, conductors of electric heating devices, such as toasters and electric irons, are made of an alloy rather than pure metal.
 - (iii) The series arrangement is not used for domestic circuits because:
 - (a) if connected in series total resistances will increase. Therefore, current flowing through the circuit will be low.
 - (b) if one appliance is switched off or gets damaged than all other appliances will also stop working because their electricity supply will be cut off.
 - (iv) The resistance of a wire is inversely proportional to its cross-sectional area. Thus, a thick wire has less resistance, and a thin wire has more resistance.
 - (v) Copper and aluminium wires are usually employed for electricity transmission because copper and aluminium have very low resistivities.