GRAVITATION

Definition: The force of attraction between any two particles in the universe is known as gravitational force or gravity.

Universal law of gravitation:

It states that, "Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them".

The force is along the line joining the centres of two objects.

Let two objects A and B of masses M and m lie at a distance of d from each other as shown in the figure.

Let F be the force of attraction between two objects.
According to the universal law of gravitation
F
$F \propto \frac{M m}{d^{2}}$
$F=G \frac{M m}{d^{2}} \quad \because G=$ universal gravitational constant
$\mathrm{G}=\frac{\mathrm{Fd}^{2}}{\mathrm{Mm}}$

- G is called a universal constant because its value does not depend on the nature of intervening medium or temperature or any other physical variable.

Definition of Universal gravitational constant:

We have $\mathrm{G}=\mathrm{Fd}^{2} / \mathrm{Mx} \mathrm{m}$
If $\mathrm{M}=\mathrm{m}=1$ unit and $\mathrm{d}=1$ unit
Then $G=F \times 1^{2} / 1 \times 1$
$\mathrm{G}=\mathrm{F}$
Hence Gravitational constant is numerically equal to the force of gravitation acting between two bodies having unit masses separated by unit distance.
S.I. unit of $\mathrm{G}=\mathrm{Nm}^{2} / \mathrm{kg}^{2}$

Value of $\mathrm{G}=6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

Importance of The Universal Law of Gravitation

- It binds us to the earth.
- It is responsible for the motion of the moon around the earth.
- It is responsible for the motion of planets around the Sun.
- Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall. Such objects are called freely falling objects.

Acceleration Due to Gravity

The acceleration with which an object falls towards the earth only due to the gravitational pull of the earth is called acceleration due to gravity.

The acceleration due to gravity is denoted by g .
The unit of g is same as the unit of acceleration, i.e., ms^{-2}

Mathematical Expression for g:

Consider an object of mass m placed near the surface of the earth.
From the Universal Law of Gravitation
The force of attraction between the object and the earth is given by
$\mathrm{F}=\mathrm{GMm} / \mathrm{R}^{2}$
(Where M - is mass of earth ; R - radius of the earth)
This force produces an acceleration ' a ' in the object. From the second law of motion.

$$
\mathrm{F}=m a
$$

For free fall, acceleration is replaced by acceleration due to gravity. Therefore, force becomes:

$$
\begin{equation*}
\mathrm{F}=m g \tag{ii}
\end{equation*}
$$

From (i) and (ii)

$$
\begin{aligned}
& \mathrm{G} \mathrm{Mm} / \mathrm{R}^{2}=\mathrm{mg} \\
& \mathrm{~g}=\mathrm{GM} / \mathrm{R}^{2}
\end{aligned}
$$

Note : This implies that g does not depend on the mass of an object. All objects irrespective of their masses fall with a constant acceleration towards the earth.

To Calculate the Value of g

Value of universal gravitational constant, $G=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$,
Mass of the earth, $M=6 \times 10^{24} \mathrm{~kg}$, and
Radius of the earth, $R=6.4 \times 10^{6} \mathrm{~m}$
Putting all these values in equation (iii), we get:
$g=\frac{6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \times 6 \times 10^{24} \mathrm{~kg}}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Thus, the value of acceleration due to gravity of the earth, $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$

Factors Affecting the Value of g

- As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.
- As we go at large heights, value of g decreases.

Motion of Objects Under the Influence of Gravitational Force of the Earth

- Consider an object falling towards earth with an initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.
- Then the three equations of motion can be represented as:

$$
\begin{gathered}
v=u+g t \\
h=u t+1 / 2 g t^{2} \\
v^{2}=u^{2}+2 g h
\end{gathered}
$$

The value of g is taken as positive in the case of object moving towards earth and taken as negative in the case of object is thrown in opposite direction of earth

Difference between Gravitational Constant (G) and Gravitational Acceleration (g)

S. No.	Gravitation Constant (G)	(g)
1.	It is numerically equal to the force of gravitation acting between two bodies having unit masses separated by unit distance.	The acceleration with which an object falls towards the earth only due to the gravitational pull of the earth is called acceleration due to gravity.
2.	Its value is $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$.	Its value is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Mass \& weight
 Mass (m)

- The mass of a body is the quantity of matter contained in it.
- Mass is a scalar quantity which has only magnitude but no direction.
- Mass of a body always remains constant and does not change from place to place.
- SI unit of mass is kilogram (kg).
- Mass of a body can never be zero.

Weight (W)

- The force with which an object is attracted towards the centre of the earth, is called the weight of the object OR The force exerted by the earth on an object is called weight of the object.
Now, Force $=m \times a$
But in case of earth, $a=g$

$$
F=m \times g
$$

But the force of attraction of earth on an object is called its weight (W).
\& therefore ; $W=m g$

- As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.
- The weight of a body changes from place to place, depending on mass of object.
- The SI unit of weight is newton(N).
- Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.
Weight of an object is given as,
$\begin{aligned} W & =m g \\ \text { Where } W & =\frac{G M m}{R^{2}}\end{aligned}$
\Rightarrow Let weight of object on earth be given as:
$W_{e}=\frac{G M_{e} m}{R_{\epsilon}^{2}}$
Where, $G=$ Gravitational constant
$M_{e}=$ Mass of earth
$R_{e}=$ Radius of earth
And $m=$ Mass of object
And, weight of object on moon be given as:

$$
W_{m}=\frac{G M_{m} m}{R_{m}^{2}}
$$

Where, $M_{m}=$ Mass of earth
$R_{\mathrm{m}}=$ Radius of earth
$\frac{W_{t}}{W_{m}}=\frac{G M_{\epsilon} m}{R_{t}^{2}} \times \frac{R_{m}^{2}}{G M_{m} m}$
$\Rightarrow \quad \frac{W_{e}}{W_{m}}=\frac{M_{e}}{M_{m}} \times\left(\frac{R_{m}}{R_{e}}\right)^{2}$
Now, We know that mass of earth is 100 times the mass of the moon.
$\Rightarrow \quad M_{e}=100 M_{m}$
And radius of earth is 4 times the radius of moon.
$\Rightarrow \quad R_{e}=4 R_{m}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{W_{s}}{W_{m}}=\frac{100 M_{m}}{M_{m}} \times\left(\frac{R_{m}}{4 R_{m}}\right)^{2} \\
& \Rightarrow \quad \frac{W_{s}}{W_{m}}=\frac{100}{16}=6.25 \approx 6(\text { approx } .) \\
& \Rightarrow \quad W_{m}=\frac{1}{6} W_{t}
\end{aligned}
$$

Hence, weight of the object on the moon $=(1 / 6) \times$ its weight on the earth.

Gravitation Numerical (Physics - Class IX)

1. The mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and that of the moon is $7.4 \times 10^{22} \mathrm{~kg}$. If the distance between the earth and the moon is $3.84 \times 10^{5} \mathrm{~km}$, calculate the force exerted by the earth on the moon. $\mathrm{G}=6.7 \times 10-11 \mathrm{~N} \mathrm{~m} 2 \mathrm{~kg}-2$. [$2.01 \times 10^{20} \mathrm{~N}$]
2. What is the magnitude of the gravitational force between the earth and a 1 kg object on its surface? (Mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and radius of the earth is $6.4 \times 10^{6} \mathrm{~m}$.) [9.8 N]
3. Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ and of the Sun $=2 \times 10^{30} \mathrm{~kg}$. The average distance between the two is $1.5 \times$ $10^{11} \mathrm{~m} . \quad\left[3.57 \times 10^{22} \mathrm{~N}\right]$
4. A car falls off a ledge and drops to the ground in 0.5 s . Let $g=10 \mathrm{~m} / \mathrm{s}^{2}$ (for simplifying the calculations).
(i) What is its speed on striking the ground? [$5 \mathrm{~m} / \mathrm{s}$]
(ii) What is its average speed during the 0.5 s ? [$2.5 \mathrm{~m} / \mathrm{s}$]
(iii) (iii)How high is the ledge from the ground? [1.25 m]
5. An object is thrown vertically upwards and rises to a height of 10 m . Calculate
(i) the velocity with which the object was thrown upwards. [$14 \mathrm{~m} / \mathrm{s}$]
(ii) the time taken by the object to reach the highest point. [1.43 s]
6. A ball is thrown vertically upwards with a velocity of $49 \mathrm{~m} / \mathrm{s}$. Calculate
(i) the maximum height to which it rises, [122.5 m]
(ii) the total time it takes to return to the surface of the earth. [10 sec]
7. A stone is released from the top of a tower of height 19.6 m . Calculate its final velocity.
[19.6 m/s]
8. A stone is thrown vertically upward with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$. Taking $g=10 \mathrm{~m} / \mathrm{s} 2$, find the maximum height reached by the stone. What is the net displacement and the total distance covered by the stone? [0 and 80 m]
9. A stone is allowed to fall from the top of a tower 100 m high and at the same time another stone is projected vertically upwards from the ground with a velocity of $25 \mathrm{~m} / \mathrm{s}$. Calculate when and where the two stones will meet. [after 4 sec at 21.6 m from ground]
10. A ball thrown up vertically returns to the thrower after 6 s . Find
(i) the velocity with which it was thrown up, [$29.4 \mathrm{~m} / \mathrm{s}$]
(ii) the maximum height it reaches, [44.1 m]
(iii) its position after 4 s . [39.2 m from ground]

Chap tor 10- Gravitation

Thrcest and Pressure
Thrust: force exerted by an object perpendicular to the surface is called thrust.

Pressure: force exerted by any object per unit area is called pressure.

$$
\begin{aligned}
& \text { Pressure }=\frac{\text { force }}{\text { Area }} \\
& \text { Pressure }=\frac{\text { Thrust }}{\text { Aver }} \\
& P=\frac{F}{A}
\end{aligned}
$$

Whore SP is pressure, F is thrust c force and A is surface area of the object.

Since the pressure: is indirectly proportional to the senfece area of the ofect, thess, pressure increase with decrease in surface area and decreases with increase in surface ares.

Thrust and Pressure in everyday life

1) Pressure exerted by a brick: A stretched brick keg on the ground exerts less pressure than a la brock kept on the ground in standerge position. Thus, in the case of stretched position a brick exerts less thrust over the ground in comparisun o the brick kept in stander position.
2) Camel can ven easily over the sand. Th feet of a easel are large. larger feet means larger area which results in low pressure. Due to this camel can easily walk on sard without silky it feet.
3) Task can easily rus over sand and mud. Conitinow chow, surrounden the wheel provide a larger surface area. Due to this, a tank can move on any terrain withact, srikery.
4) Traitor has brocade tyres: Tractors are made mainly for agriculture purpose. Because of braider tyres, a trout exerts less pressure Over the ground as pressure decreases with increase in surface area and hence easily reins over the muddy field.
5) One end of nail is potted - When a nail is pushed in a wall or wood, it is pushed for pointed side. Because of the poised shape, nail exerts more pressure over the wall or wood and is cosily pushed by hammers.
(6) The straps of school beg are broader - Since larger surface area exerts less pressure, thefore stool bags with broader straps exerts less pressure over the shoulder of a studier while bering slung over the shoulder and a stumer feel it ear t-carry even a heavy beg with more bucks.
6) Knife with sharp edge cuts easily compare \& one with bluer edge - Knife with sharp edge exerts more pressure beeause of lew area is contain with or objet, such as vegetable and hence it cent more early.

Thess, the same force aetiry on a smaller area exert à larger pressure, ard a smaller pressure on a larger area.

PRESSURE in FLMDS

Any solid objects exerts pressure because of coerght. Similarly, since flew ids also have weight, thews they exert pressure.
Gases and liguids both are considered as fluids. Fleer exert pressure in all direction over the inner wales of a container in which they ore kept.

Buoy yancy

Cogon
is then in cate b
The upwarel force exerted by flewids (Liquid oo geo) on objects when they are immersed in them is called buoyant force and the phenomenon is called buoyancy.
Buoyancy is also known as upward thrust.

Why does an object sink or float ores water?

Gravitation force

Buoyant pres.

When an object is immersed in coates, it exerts pressure over water due to its weight. At the same time water also exerts upward thrust over the object. If the force exerted by the object is greater then the upward thrust o. buogance by water, the object sine in water otherwise it float over water.
Gravitation force

Object of density less than tho of a eipeod flow in the exposed.

The objects of density greater than thar if a england sine in the lipoid.

Buoyancy in every dey life
$\frac{\text { Swimming in wat }}{\text { in coates because Anyone can be able to foin }}$ in coates because of upward thrust exerted by

Flying of bird or aero plane: Since air is a fuel, thess it also exerts upward thrust over the object. Therfore, because of upward thinnest \& cir a bird or aeroplane can fly in our.

Factors which affect buoyancy
$\frac{\text { Volume of the object: Buoyancy or upward thrust }}{\text { exerted by a fluid increases with the volume }}$ of the objet immersed in it.

Density of the fluid: The buoyant force or upward threat increases with increase in density of the fluid. Denser ligurd exert move upward threat.
This is the cause the it is easier to swim in sea water rather... Han fresh water. Sea water is saline. Salts dissolved in sea water increases the density and hence... it exerts more upward thrust then fresh war.

Density (P)
Mass per unit volume of ar object is called density or mas dersily

$$
\text { Density }(\rho)=\frac{m \cos s}{\text { volenge }}=\frac{m}{v} \Rightarrow \rho=\frac{m}{v} \mathrm{~kg} / \mathrm{m}^{3}
$$

Relactre Density
When density of a scestance is expressed in comparison with water, It is called relative density.

$$
\text { Relative density }=\frac{\text { Density of substance }}{\text { Density of water. }}
$$

Practical application of density:
When the relative density of a substance is less then 1 , it will float in water othereerse it will sick in water.

The relative cosily of ice is 0.81 , the is it float in coati.

If the relative density of an object is less then 1 , compare to the legend in which it is immersed, the objet will sick otherwise objet will flower.

ARCHIMEDES PRINGIDLE
It shades that - "When an objet is immersed fully or partially in a Ufuid, it experences arian uncwaid force which is eyed to the weigh of the Mewed despland by the object."

Aplication of Archimedes Principle
When the weight of displaced uguid by on object is greater than the weight of the otojet, the objet will float in the Igwid and when the weight if ugwid will be smaller than the of the weight of the object, the objer will sink in uguid.

In submarines, there is a tank which can be filled or empired an per reyuremero. It is called buoyancy tank. When rebmarina have to go invicle the water, the buoyany tank is filled with water, so thar weight of the submarines wowed become more then the coerght of water displaced by it.

Air Ballons:- To raise the air balloon in air, the air inside the ballon is heated. Air expands beequese of heat and becomes ughter. Thus, balloon gets upward thrust from surrounding air and rises cup.

Ships: A ship is much heavier the w water, yet it flo ar on water. This happens because of unique shape of the ship. Because of its shape 1 the volume of the ship is larger compared to in weights. Dew to this, water displaced by the ship proviche a proper
upward thrust in the ship and the upward thrust th the ship and the
ship loos on water.

Nomerial : A block of wood is kept on a taderop. The mass of wooch block is 5 kg and its dimenoivas are $40 \mathrm{~cm} \times 20 \mathrm{~cm} \times 10 \mathrm{~cm}$. Rind the pressure exerted by th woolen black on the tale top if it is mode to lie on the table top with it socles of dimansin
(a) $20 \mathrm{~cm} \times 10 \mathrm{~cm}$
(b) $40 \mathrm{~cm} \times 20 \mathrm{~cm}$.

Sol'. Tho mass of woolen block $m=5 \mathrm{~kg}$
Thrust $F=M g=5 \times 9.8=49 \mathrm{~N}$
(a) area of side $=20 \times 10 \mathrm{~cm}^{2}=200 \mathrm{~cm}^{2}=0.02 \mathrm{~m}^{2}$

$$
\text { Presscne }=\frac{f}{A}=\frac{49}{0.02}=2450 \mathrm{Nm}^{2}
$$

(b) Area of side $=40 \times 20 \mathrm{~cm}^{2}=800 \mathrm{w}^{2}=0.08 \mathrm{~m}^{2}$

$$
\text { Pressure }=\frac{f}{A}=\frac{49}{0.08}=612.5 \mathrm{Nm}^{2}
$$

Ans. (a) The cube will experience a greater buoyant force in the saturated salt solution because the density of the salt solution is greater than that of water.
The smaller cube will experience lesser buoyant force as its volume is lesser than the initial cube.
(b) Buoyant force $=$ Weight of the liquid displaced

$$
\begin{aligned}
& =\text { Density of water } \times \text { Volume of water displaced } \times g \\
& =1,000 \times \frac{4}{4,000} \times 10=10 \mathrm{~N}
\end{aligned}
$$

Numericals

Q. 1. An elephant weighing 50,000 newton stands on one foot of area $1000 \mathrm{~cm}^{2}$. What is the pressure exerted on the ground?
Sol. Here,

$$
\begin{aligned}
& \text { Force }=50,000 \mathrm{~N} \\
& \begin{aligned}
& \text { Area }=1,000 \mathrm{~cm}^{2} \\
&=\frac{1,000}{100 \times 100} \mathrm{~m}^{2}=0.1 \mathrm{~m}^{2} \\
& \text { Pressure }=\frac{\text { Force }}{\text { Area }}=\frac{50,000 \mathrm{~N}}{0.1 \mathrm{~m}^{2}}=\mathbf{5 , 0 0 , 0 0 0 ~ \mathrm { Nm } ^ { - 2 }}
\end{aligned}
\end{aligned}
$$

Q. 2. Calculate the pressure exerted by a girl weighing 500 N standing on one stiletto heel of area $1 \mathrm{~cm}^{2}$.
Sol. Here, Force $=500 \mathrm{~N}$

$$
\begin{aligned}
\text { Area } & =1 \mathrm{~cm}^{2}=\frac{1}{10,000} \mathrm{~m}^{2} \\
& =0.0001 \mathrm{~m}^{2} \\
\text { Pressure } & =\frac{\text { Force }}{\text { Area }} \\
& =\frac{500 \mathrm{~N}}{0.0001 \mathrm{~m}^{2}}=\mathbf{5 0 , 0 0 , 0 0 0} \mathrm{Nm}^{-2}
\end{aligned}
$$

Q. 3. A solid cube of dimensions $50 \mathrm{~cm} \times 50 \mathrm{~cm} \times 50 \mathrm{~cm}$ and weighing 25 N is placed on a table. Calculate the pressure exerted on the table.
Sol. Side of cube, $l=50 \mathrm{~cm}=0.50 \mathrm{~m}$

$$
\text { Area of base of cube }=l \times l=0.50 \times 0.50=0.25 \mathrm{~m}^{2}
$$

Force on base $=$ Weight of cube $=25 \mathrm{~N}$

$$
\begin{aligned}
\therefore \quad \text { Pressure } & =\frac{\text { Force }}{\text { Area }}=\frac{F}{A}=\frac{25}{0.25} \\
& =\mathbf{1 0 0} \mathbf{~ N m}^{-\mathbf{2}} \text { or } \mathbf{1 0 0} \text { pascal. }
\end{aligned}
$$

Q. 4. The length and breadth of a rectangular tank are 3.0 m and 2.0 m . It contains water up to height 1.5 m . Calculate the total thrust and pressure at the bottom of tank due to water.

Density of water $=1,000 \mathrm{~kg} / \mathrm{m}^{3}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
Sol. \quad Volume of water $=$ Length \times breadth \times height

$$
\begin{aligned}
& =(3.0 \mathrm{~m}) \times(2.0 \mathrm{~m}) \times(1.5 \mathrm{~m}) \\
& =9.0 \mathrm{~m}^{3}
\end{aligned}
$$

Mass of water, $M=$ Volume \times Density

$$
=\left(9.0 \mathrm{~m}^{3}\right) \times\left(1,000 \mathrm{~kg} / \mathrm{m}^{3}\right)=9,000 \mathrm{~kg}
$$

Weight of water, $W=M g=9,000 \times 10^{4} \mathrm{~N}$
Total thrust of water on the bottom of tank,

$$
\begin{aligned}
F & =\text { Weight of water } \\
& =9 \times 10^{4} \mathrm{~N} \\
\text { Area of bottom } & =\text { Length } \times \text { Breadth } \\
& =3.0 \times 2.0=6.0 \mathrm{~m}^{2}
\end{aligned}
$$

Pressure of water at the bottom,

$$
\begin{aligned}
P & =\frac{\text { Force }}{\text { Area of bottom }} \\
& =\frac{9 \times 10^{4}}{6.0}=\mathbf{1 . 5} \times 1 \mathbf{1 0}^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 5. The mass of a body is 70 kg . When completely immersed in water, it displaces $2000 \mathrm{~cm}^{3}$ of water. What is the relative density of the material of the body?
Sol. Mass of body in air, $m=70$
Weight of body in air $=70 \mathrm{~kg}$ weight
Loss of weight of body in water $=$ Weight of water displaced by body
$=$ Volume of water \times Density of water
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Volume of water displaced $=2000 \mathrm{~cm}^{3}$
As

$$
1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}
$$

$\therefore \quad$ Volume of water displaced $=2000 \times 10^{-6} \mathrm{~m}^{3}$

$$
=2 \times 10^{-3} \mathrm{~m}^{3}
$$

$\therefore \quad$ Loss in weight of body when immersed in water

$$
=\left(2 \times 10^{-3}\right) \times 1000=2 \mathrm{~kg} \text { weight }
$$

$\therefore \quad$ Relative density of material of body

$$
\begin{aligned}
& =\frac{\text { Weight of body in air }}{\text { Loss of weight of body in water }} \\
& =\frac{70}{2}=\mathbf{3 5}
\end{aligned}
$$

Q. 6. A wooden block floats in glycerine in such a way that its $\frac{2}{5}$ th volume remains above surface. If relative density of wood is 0.78 , calculate the relative density of glycerine.
Sol. Relative density of wood $=\frac{\text { Density of wood }}{\text { Density of water }}$

$$
\begin{aligned}
& \therefore \quad \text { Density of wood }=\text { Relative density of wood } \times \text { Density of water } \\
&=0.78 \times 1 \mathrm{~g} / \mathrm{cm}^{3}=0.78 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Fraction of volume of wood submerged in glycerine

$$
\begin{aligned}
& =\frac{\text { Density of wood }}{\text { Density of glycerine }} \\
\Rightarrow \quad \frac{3}{5} & =\frac{0.78}{\text { Density of glycerine }}
\end{aligned}
$$

$\therefore \quad$ Density of glycerine $=0.78 \times \frac{5}{3}=\mathbf{1 . 3 0} \mathrm{g} / \mathbf{c m}^{3}$

