EXEMPLAR PROBLEMS - CLASS X

ANSWERS

EXERCISE 1.1

1. (C)
2. (D)
3. (C)
4. (B)
5. (A)
6. (B)
7. (C)
8. (A)
9. (D)
10. (D)

EXERCISE 1.2

1. No, because an integer can be written in the form $4 q, 4 q+1,4 q+2,4 q+3$.
2. True, because $n(n+1)$ will always be even, as one out of n or $(n+1)$ must be even.
3. True, because $n(n+1)(n+2)$ will always be divisible by 6 , as atleast one of the factors will be divisible by 2 and atleast one of the factors will be divisible by 3 .
4. No. Since any positive integer can be written as $3 q, 3 q+1,3 q+2$,
therefore, square will be $9 q^{2}=3 m, 9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1=3 m+1$, $9 q^{2}+12 q+3+1=3 m+1$.
5. No. $(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)=3 m+1$.
6. $\mathrm{HCF}=75$, as HCF is the highest common factor.
7. $3 \times 5 \times 7+7=7(3 \times 5+1)=7(16)$, which has more than two factors.
8. No, because HCF (18) does not divide LCM (380).

EXEMPLAR PROBLEMS - CLASS X

9. Terminating decimal expansion, because $\frac{987}{10500} \quad \frac{47}{500}$ and $500 \quad 5^{3} \quad 2^{2}$

$$
\left[\frac{987}{10500}=\frac{329}{3500}=\frac{329}{2^{2} \cdot 5^{3} \cdot 7}=\frac{47}{2^{2} 5^{3}}=.094 .\right]
$$

10. Since 327.7081 is a terminating decimal number, so q must be of the form $2^{m} .5^{n}$; m, n are natural numbers.

EXERCISE 1.3

8. 63
9. 625
10. 2520 cm
11. $2^{3} .5^{4}, 0.0514$

EXERCISE 2.1

1. (A)
2. (C)
3. (D)
4. (D)
5. (B)
6. (A)
7. (B)
8. (A)
9. (C)
10. (A)
11. (D)

EXERCISE 2.2

1. (i) No
(ii) $0, a x^{2}+b x+c$
(iii) $\operatorname{deg} p(x)<\operatorname{deg} g(x)$
(iv) $\operatorname{deg} g(x) \leq \operatorname{deg} p(x)$
(v) No
2. (i) False
(ii) False
(iii) True
(iv) True
(v) True
(vi) False
(vii) False

EXERCISE 2.3

1. $1,-\frac{1}{4}$
2. $\frac{2}{3},-2$
3. $-1, \frac{-7}{5}$
4. $0,-3,5$
5. $\frac{-3}{2}, \frac{-1}{4}$
6. $\frac{\sqrt{2}}{4}, \frac{-3 \sqrt{2}}{2}$
7. $\frac{1}{2}, \sqrt{2}$
8. $\sqrt{3},-5 \sqrt{3}$
9. $-2 \sqrt{5}, \frac{\sqrt{5}}{2}$
10. $\frac{2}{3},-\frac{1}{7}$

EXERCISE 2.4

1. (i) $-2, \frac{2}{3}$
(ii) $\frac{5}{2}, \frac{1}{8}$
(iii) $-3 \sqrt{3}, \sqrt{3}$
(iv) $\frac{\sqrt{5}}{5}, \frac{-\sqrt{5}}{2}$
2. $a=-1$ and $b=3$ or $a=5, b=-3$. Zeroes are $-1,2,5$

EXEMPLAR PROBLEMS - CLASS X

3. $\frac{-\sqrt{2}}{2}, \frac{-2 \sqrt{2}}{3}$
4. $k=-3$

Zeroes of $2 x^{4}+x^{3}-14 x^{2}+5 x+6$ are $1,-3,2,-\frac{1}{2}$
Zeroes of $x^{2}+2 x-3$ are 1, -3
5. $\sqrt{5}, \sqrt{5} \sqrt{2}, \sqrt{5}-\sqrt{2}$
6. $a=-1, b=-2$

1 and 2 are the zeroes of $q(x)$ which are not the zeroes of $p(x)$.

EXERCISE 3.1

1. (D)
2. (D)
3. (C)
4. (D)
5. (D)
6. (C)
7. (C)
8. (D)
9. (D)
10. (D)
11. (C)
12. (D)
13. (C)

EXERCISE 3.2

1. (i) Yes
(ii) No
2. (i) No
(ii) Yes
(iii) No
(iii) No
(iii) Yes
(iv) No
3. (i) No
(ii) Yes
4. No
5. False
6. Not true

EXERCISE 3.3

1. (i) $\lambda=-1$
(ii) $\lambda=1$
(iii) All real values of λ except ± 1.
2. $k=-6$
3. $a=3, b=1$
4. (i) All real values of p except 10 .
(ii) $p=1$
(iii) All real values of p except $\frac{9}{10}$.
(iv) All real values of p except -4 .
(v) $p=4, q=8$
5. Do not cross each other.
6. $x-y=-4$
$2 x+3 y=7$; infinitely many pairs.

EXEMPLAR PROBLEMS - CLASS X

7. $31, \frac{-5}{7}$
8. (i) $x=1.2, y=2.1$
(ii) $x=6, y=8$
(iii) $x=3, y=2$
(iv) $x=\frac{1}{6}, y=\frac{1}{4}$
(v) $x=1, y=-1$
(vi) $x=a^{2}, y=b^{2}$
(vii) $x=\frac{1}{2}, y=\frac{-3}{2}$
9. $x=340, y=-165 ; \quad-\frac{1}{2}$
10. (i) consistent; $x=-1, y=-1 \quad$ (ii) inconsistent
(iii) consistent. The solution is given by $y=3-x$, where x can take any value, i.e., there are infinitely many solutions.
11. $(2,0),(0,4),(0,-4) ; 8$ sq. units.
12. $x=y$; Infinitely many lines.
13. $a=5, b=2$.
14. $55^{\circ}, 85^{\circ}$.
15. Salim's age $=38$ years, Daughter's age $=14$ years .
16. 40 years.
17. 40,48 .
18. 100 students in hall $\mathrm{A}, 80$ students in hall B .
19. Rs 10, Rs 3 .
20. 100 .
21. $x=20, y=30, \quad \mathrm{~A}=130^{\circ}, \quad \mathrm{B}=100^{\circ}, \quad \mathrm{C}=50^{\circ}, \quad \mathrm{D}=80^{\circ}$

EXERCISE 3.4

1. $x=1, y=4 ; 4: 1$
2. $(0,0),(4,4),(6,2)$
3. 8 sq. units
4. $4 x+4 y=100,3 x=y+15$, where Rs x and Rs y are the costs of a pen and a pencil box respectively; Rs 10, Rs 15
5. $(1,0),(2,3),(4,2)$
6. $10 \mathrm{~km} / \mathrm{h}, 40 \mathrm{~km} / \mathrm{h}$
7. $2.5 \mathrm{~km} / \mathrm{h}$
8. $10 \mathrm{~km} / \mathrm{h}, 4 \mathrm{~km} / \mathrm{h}$
9. 83
10. Rs 2500 , Rs 30
11. Rs 600 , Rs 400
12. Rs 12000 in scheme A, Rs 10000 in scheme B
13. 500

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 4.1

1. (D)
2. (C)
3. (C)
4. (A)
5. (B)
6. (D)
7. (B)
8. (C)
9. (B)
10. (A)
11. (C)

EXERCISE 4.2

1. (i) No, because discriminant $=-7<0$.
(ii) Yes, because discriminant $=9>0$.
(iii) No, because discriminant $=0$.
(iv) Yes, because discriminant $=4>0$.
(v) No, because discriminant $=-64<0$.
(vi) Yes, because discriminant $=\left(\begin{array}{ll}2 & 2 \sqrt{2}\end{array}\right)^{2} 0$.
(vii) Yes, because discriminant $=1>0$.
(viii) No, because discriminant $=-7<0$.
(ix) Yes, because discriminant $=1>0$.
(x) Yes, because discriminant $=8>0$.
2. (i) False, for example : $x^{2}=1$ is a quadratic equation with two roots.
(ii) False, for example $x^{2}+1=0$ has no real root.
(iii) False, for example : $x^{2}+1=0$ is a quadratic equation which has no real roots.
(iv) True, because every quadratic polynomial has almost two zeroes.
(v) True, because if in $a x^{2}+b x+c=0, a$ and c have opposite signs, then $a c<0$ and so $b^{2}-4 a c>0$.
(vi) True, because if in $a x^{2}+b x+c=0, a$ and c have same sign and $b=0$, then $b^{2}-4 a c=-4 a c<0$.
3. $x^{2}-3 x+1=0$ is an equation with integral coefficients but its roots are not integers.
4. $x^{2}-6 x \quad 7 \quad 0$, which has roots $3 \sqrt{2}, 3-\sqrt{2}$
5. Yes. $\sqrt{3} x^{2}-7 \sqrt{3} x \quad 12 \sqrt{3} \quad 0$, which has roots 3,4
6. No. 7. Yes

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 4.3

1. (i) $\frac{5}{2},-1$
(ii) $-1,-\frac{8}{5}$
(iii) $-\frac{4}{3}, 3$
(iv) 5,2
(v) $-3 \sqrt{2}, \sqrt{2}$
(vi) $\sqrt{5}, 2 \sqrt{5}$
(vii) $\sqrt{11} \quad 3, \sqrt{11}-3$
2. (i) $-\frac{3}{2}, \frac{2}{3}$
(ii) $-\frac{1}{2}, 3$
(iii) $\sqrt{2},-\frac{\sqrt{2}}{6}$
(iv) $\frac{\sqrt{5}}{3},-2 \sqrt{5}$
(v) $\frac{1}{21}, \frac{1}{21}$

EXERCISE 4.4

1. (i) Real roots exist; roots are $\frac{1}{2}, \frac{-3}{4}$
(ii) Real roots exist; roots are $2,-\frac{1}{2}$
(iii) Real roots exist; roots are $\frac{1}{5} \frac{\sqrt{51}}{5}, \frac{1}{5}-\frac{\sqrt{51}}{5}$
(iv) Real roots exist; roots are $4+\frac{3 \sqrt{2}}{2}, 4-\frac{3 \sqrt{2}}{2}$
(v) Real roots exist; roots are $-7 \sqrt{5}, 2 \sqrt{5}$
2. The natural number is 12
3. The natural number is 8
4. Original speed of the train is $45 \mathrm{~km} / \mathrm{h}$
5. Zeba's age now is 14 years
6. Nisha's age is 5 years and Asha's age is 27 years
7. Length of the pond is 34 m and breadth is 24 m
8. 14

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 5.1

1. (D)
2. (B)
3. (B)
4. (B)
5. (C)
6. (B)
7. (B)
8. (B)
9. (C)
10. (A)
11. (C)
12. (D)
13. (B)
14. (C)
15. (A)
16. (A)
17. (C)
18. (A)

EXERCISE 5.2

1. (i), (iv) and (vii) form an AP as in each of these $a_{k}-a_{k}$ is the same for different values of k.
2. False, as $a_{4}-a_{3} \quad a_{3}-a_{2}$.
3. Yes, $a_{30}-a_{20} 30-20 d 10 d-40$.
4. The difference between any two corresponding terms of such APs is the same as the difference between their first terms.
5. No.
6. No, as the total fare (in Rs) after each km is $15,23,31,39$, ---
7. (i), (ii) and (iii) form an AP as in the list of numbers formed every succeeding term is obtained by adding a fixed number.
8. (i) Yes
(ii) No
(iii) No

EXERCISE 5.3

1. $\left(\mathrm{A}_{1}\right) \rightarrow\left(\mathrm{B}_{4}\right)$
$\left(\mathrm{A}_{2}\right) \rightarrow\left(\mathrm{B}_{5}\right)$
$\left(\mathrm{A}_{3}\right) \rightarrow\left(\mathrm{B}_{1}\right)$
$\left(\mathrm{A}_{4}\right) \rightarrow\left(\mathrm{B}_{2}\right)$
2. (i) $1, \frac{5}{4}, \frac{3}{2} \quad$ (ii) $\frac{11}{3}, \frac{10}{3}, 3 \quad 1 \quad$ (iii) $4 \sqrt{3}, 5 \sqrt{3}, 6 \sqrt{3}$
(iv) $(a+2)+(b+1),(a+2)+(b+2),(a+3)+(b+2)$
(v) $5 a 4,6 a 5,7 a 6$

EXEMPLAR PROBLEMS - CLASS X

3. (i) $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$
(ii) $-5,-8,-11$
(iii) $\sqrt{2}, \frac{3}{\sqrt{2}}, \frac{4}{\sqrt{2}}$
4. $a-1, b \quad 15, c \quad 31$
5. $3,7,11,15,--$
6. $d-\frac{1}{5}, n \quad 27$
7. $1,6,11,16,---$
8. 126
9. Yes, $17^{\text {th }}$ term.
10. $k=0$
11. $67,69,71$
12. $40^{\circ}, 60^{\circ}, 80^{\circ}$
13. $16^{\text {th }}$ term; -21
14. -1
15. -78
16. 12th term
17. 73
18. 3
19. $n=6, d=10$
20.
21. (i) -9400
(ii) $\frac{7 n-1}{2}$
(iii) $\frac{1111 a-6 b}{a b}$
22. $16^{\text {th }}$ term $;-632$
23. -780
24. $5,13,21,---$
25. $k=27$
26. -510
27. 100
28. 330
29. 1170
30. 504
31. $n=5,11$
32. 11
33. Rs 800
34. 25 months.

EXERCISE 5.4

1. 970
2. (i) 12250
(ii) 12750
(iii) 75250
3. 3
4. $3,7,11,15,--5$.
(i) 1683
(ii) 13167
5. $1: 3 ; 5: 49$
6. 50
7. Rs 3900; Rs 44500
8. $728 \mathrm{~m} ; 26 \mathrm{~m}$.

EXERCISE 6.1

1. (C)
2. (B)
3. (C)
4. (A)
5. (D)
6. (B)
7. (B)
8. (A)
9. (B)
10. (C)
11. (A)
12. (C)

EXERCISE 6.2

1. No, $25^{2} 5^{2} 24^{2}$
2. Yes, because $\frac{\mathrm{PA}}{\mathrm{QA}} \frac{\mathrm{PB}}{\mathrm{BR}}$
3. No, $\mathrm{D}=\mathrm{R}$ but F P.
4. Yes, SAS criterion.

EXEMPLAR PROBLEMS - CLASS X

5. No, $\Delta \mathrm{QPR} \sim \Delta \mathrm{STM}$ 6. No, Corresponding sides must also be proportional.
6. Yes, as the corresponding two sides and the perimeters are equal, their third sides will also be equal.
7. Yes, AAA criterion.
8. No, ratio will be $\frac{9}{25}$.
9. No, For this, $\angle \mathrm{P}$ should be 90°.
10. Yes, AA criterion.
11. No, angles should be included angles between the two pairs of proportional sides.

EXERCISE 6.3
2. $x=2$
4. $9: 1$
6. $4 \sqrt{3} \mathrm{~cm}$
7. 18 cm
8. $1: 3$
9. 60 cm
10. $108 \mathrm{~cm}^{2}$
12. 12 cm
13. $\frac{55}{3} \mathrm{~cm}$
14. 10 m
15. 8 m

EXERCISE 6.4

1. $5 \mathrm{~cm}, 2 \mathrm{~cm}$
2. $\mathrm{BC}=6.25 \mathrm{~cm}, \mathrm{EF}=16.8 \mathrm{~cm}$.
3. 0.8 m
4. 8 km
5. 20.4 m
6. 9 m
7. $2 \sqrt{5} \mathrm{~cm}, 6 \mathrm{~cm}$
8. $2 \sqrt{5} \mathrm{~cm}, 5 \mathrm{~cm}, 3 \sqrt{5} \mathrm{~cm}$
9. $8 \mathrm{~cm}, 12 \mathrm{~cm}, 16 \mathrm{~cm}$

EXERCISE 7.1

1. (B)
2. (B)
3. (C)
4. (B)
5. (C)
6. (B)
7. (C)
8. (B)
9. (D)
10. (A)
11. (B)
12. (D)
13. (B)
14. (A)
15. (A)
16. (D)
17. (D)
18. (B)
19. (B)
20. (C)

EXERCISE 7.2

1. True. Because all three sides of both triangles are proportional.
2. True. The three points lie on the line $x=-4$.
3. False, since two points lie on the y-axis and one point lies in quadrant I.
4. False. $\mathrm{PA}=\sqrt{2}$ and $\mathrm{PB}=\sqrt{10}$, i.e., PA PB .
5. True, since ar $(\triangle \mathrm{ABC})=0$.

EXEMPLAR PROBLEMS - CLASS X

6. False, since the diagonals donot bisect each other.
7. True, radius of the circle $=5$ and $\mathrm{OP}>5$
8. False, since AP AQ
9. True, since P divides $A B$ in the ratio $1: 2$
10. True, since B divides AC in the ratio $2: 7$
11. False, since $\mathrm{PC}=\sqrt{26} \quad 6, \mathrm{P}$ will lie inside the circle.
12. True, Mid-points of both the diagonals are the same and the diagonals are of equal length.

EXERCISE 7.3

1. Scalene triangle
2. $(9,0),(5,0), 2$ points
3. Rectangle
4. $a=-3$
5. $(-3,5)$ the middle point of AB . Infinite number of points. In fact all points which are solutions of the equation $2 x+y+1=0$.
6. $\frac{-1}{2}, 0$, isosceles triangle
7. $y=-3,-5, \mathrm{PQ}=\sqrt{290}, 13 \sqrt{2}$
8. $6: 7, \frac{-34}{13}, 0$
9. $1: 5$
10. $a=5,3$
11. $a=2$, Area $=6$ sq. unit
12. $\frac{4}{5}, \frac{21}{5}$
13. $2, \frac{1}{2}$
14. $8: 1, \frac{8}{3}, \frac{-1}{9}$

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 7.4

1. $0,3-4 \sqrt{3}$
2. $\frac{3}{4}$ sq. units.
3. (i) $\frac{x_{2} x_{3}}{2}, \frac{y_{2} \quad y_{3}}{2}$
(iii) same as (ii)
(ii) $\frac{x_{1} \quad x_{2} \quad x_{3}}{3}, \frac{y_{1} \quad y_{2} \quad y_{3}}{3}$
(iv) same as (ii)
4. $a=-3, h \frac{12 \sqrt{26}}{13}$
5. Yes, Jaspal should be placed at the point $(7,5)$
6. House to Bank $=5 \mathrm{~km}$

Bank to school $=10 \mathrm{~km}$
School to Office $=12 \mathrm{~km}$
Total distance travelled $=27 \mathrm{~km}$
Distance from house to office $=24.6 \mathrm{~km}$
Extra distance $=2.4 \mathrm{~km}$

EXERCISE 8.1

1. (B)
2. (A)
3. (B)
4. (C)
5. (B)
6. (B)
7. (C)
8. (A)
9. (A)
10. (D)
11. (B)
12. (C)
13. (C)
14. (B)
15. (A)

EXERCISE 8.2

1. True
2. False
3. False $\left[\sin 80^{\circ}-\sin 10^{\circ}=\right.$ positive : as θ
increases, value of $\sin \theta$ increases]
4. True
5. True
6. False
7. False
8. False
9. False
10. False
11. False
12. True

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 8.3

8. 30°
9. $\frac{-1}{2}$
10. $\frac{15}{2} \mathrm{~m}$
11. 1
12. 90°
13. 45°

EXERCISE 8.4
3. $10 \sqrt{3} \quad 1 \mathrm{~m}$
7. $25 \sqrt{3} \mathrm{~m}$
13. $10 \sqrt{3} \mathrm{~m} ; 10 \mathrm{~m}$
14. $h(\cot \alpha-\cot \beta)$
16. $5(\sqrt{3}+3) \mathrm{m}$ 18.8 m

EXERCISE 9.1

1. (B)
2. (D)
3. (C)
4. (A)
5. (D)
6. (C)
7. (A)
8. (A)
9. (D)
10. (B)

EXERCISE 9.2

1. False
2. False
3. True
4. True
5. True
6. False
7. True
8. False
9. True
10. True

EXERCISE 9.3

1. 3 cm

EXERCISE 9.4

3. 20 cm
4. 4.8 cm
5. 30°
6. $\frac{20}{3} \mathrm{~cm}$
7. 70°
8. $8 \sqrt{2} \mathrm{~cm}^{2}$
9. 24 cm EXERCISE 10.1
10. (D)
11. (B)
12. (A)
13. (C)
14. (B)
15. (D)

EXERCISE 10.2

1. True 2. False 3. False 4. True

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 10.3
2. Yes
7. No

EXERCISE 10.4

1. 3.25 cm
2. Yes, yes
3. 4 cm
4. 8 cm

EXERCISE 11.1

1. (B)
2. (A)
3. (B)
4. (A)
5. (B)
6. (A)
7. (D)
8. (B)
9. (C)
10. (D)

EXERCISE 11.2

1. No, radius of the circle is $\frac{a}{2}$
2. Yes, side of the square is $2 a \mathrm{~cm}$
3. No, side of the outer square = diagonal of the inner square
4. No, it is only true for minor segment.
5. No, it is πd.
6. Yes, distance covered in one revolution $=2 \pi r$
7. No, it will depend on the value of radius.
8. Yes, it will be true for the arcs of the same circle.
9. No, it will be true for the arcs of the same circle.
10. No, it will be true for arcs of the same circle.
11. Yes, radius of the circle breadth of the rectangle.
12. Yes, their radii are equal
13. Yes, their radii are equal
14. No, diagonal of the square is $p \mathrm{~cm}$.

EXERCISE 11.3

1. 33 cm
2. $(16 \pi-32) \mathrm{cm}^{2}$
3. $308 \mathrm{~cm}^{2}$
4. 500 .
5. $154 \mathrm{~m}^{2}$
6. $(380+25 \pi) \mathrm{cm}^{2}$
7. $54.5 \mathrm{~cm}^{2}$
8. $(32+2 \pi) m^{2}$
9. $(248-4 \pi) m^{2}$

EXEMPLAR PROBLEMS - CLASS X

10. $\frac{308}{3}-49 \sqrt{3} \mathrm{~cm}^{2}$
11. $30.96 \mathrm{~cm}^{2}$
12. $39.25 \mathrm{~cm}^{2}$
13. $308 \mathrm{~cm}^{2}$
14. $15246 \mathrm{~m}^{2}$
15. $1386 \mathrm{~cm}^{2}$
16. $\frac{60}{\pi} \mathrm{~cm}$

EXERCISE 11.4

1. Rs 26400
2. 560
3. $24 \sqrt{21}-77 \mathrm{~m}^{2}$
4. $\quad 75.36-36 \sqrt{3} \mathrm{~cm}^{2}$
5. Rs 3061.50 6. $196 \mathrm{~cm}^{2}$
6. $1.967 \mathrm{~cm}^{2}$ (approx)
7. $\quad 8.7 \mathrm{~cm}^{2}$
8. $42 \mathrm{~cm}^{2}$
9. $168 \mathrm{~cm}^{2}$
10. $4.3 \mathrm{~m}^{2}$
11. $800 \mathrm{~cm}^{2}$
12. $1: 3: 5$
13. $45 \frac{5}{6} \mathrm{~cm}^{2}$
14. $73 \frac{1}{3} \mathrm{~cm}$, Areas: $\frac{154}{3} \mathrm{~cm}^{2}, 154 \mathrm{~cm}^{2}$; Arc lengths: $\frac{44}{3} \mathrm{~cm}$;

Arc lengths of two sectors of two different circles may be equal, but their area need not be equal.
17. $180-8 \pi \mathrm{~cm}^{2}$
18. 40
19. $\frac{25 \pi}{4}+\frac{25}{2} \mathrm{~cm}^{2}$
20. $462 \mathrm{~cm}^{2}$

EXERCISE 12.1

1.	(A)	2.	(A)	3.	(B)	4.	(B)	5.
6.	(D)	7.	(A)	8.	(A)	9.	(B)	10.
11.	(B)	12.	(C)	13.	(A)	14.	(A)	15.
16.	(B)	17.	(C)	18.	(A)	19.	(A)	20.

EXERCISE 12.2

1. False
2. False
3. False
4. False
5. False
6. True
7. False
8. True

EXERCISE 12.3

1. 6 cm
2. 84
3. 15 cm
4. $7: 1$
5. $160 \mathrm{~cm}^{2}$
6. $277 \mathrm{~cm}^{3}$
7. $855 \mathrm{~cm}^{2}$ (approx.)
8. $14 \mathrm{~cm}, 7 \mathrm{~cm} ; 132 \mathrm{~cm}^{3}, 66 \mathrm{~cm}^{3} ; 396 \mathrm{~cm}^{3}$
9. $327.4 \mathrm{~cm}^{3}$

EXEMPLAR PROBLEMS - CLASS X

10. 150
11. 1500
12. 2541
13. 12960
14. 450
EXERCISE 12.4
15. 28.44 cm
16. 8.6 m
17. $3960 \mathrm{~cm}^{3}, 29.7 \mathrm{~kg}$
18. 480000 words
19. 51 minutes 12 sec
20. $74.25 \mathrm{~m}^{3}, 80.61 \mathrm{~m}^{2}$
21. Rs 2250
22. 2 hours
23. 112 m
24. 0.5 cm
25. $487.6 \mathrm{~cm}^{3}$
26. Rs 230.12
$13.36 \mathrm{~cm}, 43.27 \mathrm{~cm}$
27. 4 m
28. 54
29. 90 cm
19.2 .5 cm
30. $\quad 301.44 \mathrm{~cm}^{2}$
31. $\quad 1.584 \mathrm{~m}^{3}$
32. $170.8 \mathrm{~cm}^{3}$

EXERCISE 13.1

1. (C)
2. (B)
3. (A)
4. (C)
5. (B)
6. (B)
7. (B)
8. (C)
9. (C)
10. (C)
11. (A)
12. (D)
13. (D)
14. (A)
15. (C)
16. (B)
17. (C)
18. (A)
19. (A)
20. (A)
21. (D)
22. (B)
23. (C)
24. (A)
25. (C)
26. (B)

EXERCISE 13.2

1. Not always, because for calculating median of a grouped data, the formula used is based on the assumption that the observations in the classes are uniformly distributed (or equally spaced).
2. Not necessary, the mean of the data does not depend on the choice of a (assumed mean).
3. No, it is not always the case. The values of these three measures can be the same. It depends on the type of data.
4. Not always. It depends on the data.
5. No, the outcomes are not equally likely. For example, outcome 'one girl' means $g b b, b g b, b b g$ 'three girls' means $g g g$ and so on.
6. No, the outcomes are not equally likely. The outcome ' 3 ' is more likely than the others.
7. Peehu; probability of Apoorv's getting $36 \frac{1}{36}$ while probability of Peehu's getting $36 \quad \frac{1}{6} \quad \frac{6}{36}$.

EXEMPLAR PROBLEMS - CLASS X

8. Yes, the probability of each outcome is $\frac{1}{2}$, since the two outcomes are equally likely.
9. No, outcomes ' 1 ' and 'not 1 ' are not equally likely, $\mathrm{P}(1)=\frac{1}{6}, \mathrm{P}($ not 1$)=\frac{5}{6}$,
10. No, the outcomes are not equally likely. Outcome 'no head' means 'TTT'; outcome 'one head' means THT, HTT, TTH and so on. $\mathrm{P}($ TTT $)=\frac{1}{8}, \mathrm{P}($ one head $)=\frac{3}{8}$ and so on.
11. No, the outcomes 'head' and 'tail' are equally likely every time regardless of what you get in a few tosses.
12. It could be a tail or head as both the outcomes are equally likely, in each toss.
13. No, head and tail are equally likely. So, no question of expecting a tail to have a higher chance in the 4th toss.
14. Yes, the outcomes 'odd number', 'even number' are equally likely in the situation considered.

EXERCISE 13.3

1. 5.5
2. 35
3. 12.93
4. 26
5. Rs. 356.5
6. 109.92
7.123 .4 kg
7. $14.48 \mathrm{~km} / \mathrm{l}$; No, the manufacturer is claiming mileage $1.52 \mathrm{~km} / \mathrm{h}$ more than the average mileage
8.

Weight (in kg)	Number of persons
Less then 45	4
Less then 50	8
Less then 55	21
Less then 60	26
Less then 65	32
Less then 70	37
Less then 75	39
Less then 80	40

EXEMPLAR PROBLEMS - CLASS X

10.

Marks	Number of students
$0-10$	10
$10-20$	40
$20-30$	80
$30-40$	140
$40-50$	170
$50-60$	130
$60-70$	100
$70-80$	70
$90-90$	40

11.

Marks	Number of candidates
$0-10$	2
$10-20$	2
$20-30$	3
$30-40$	4
$40-50$	6
$50-60$	6
$60-70$	5
$80-80$	2

12. $a=12, b=13, c=35, d=8, e=5, f=50$

EXEMPLAR PROBLEMS - CLASS X

13.

(i) Less than type		(ii) More than type	
Ages (in years)	Number of students	Ages (in years)	Number of students
Less than 10	0	More than or equal to 10	300
Less than 20	60	More than or equal to 20	240
Less than 30	102	More than or equal to 30	198
Less than 40	157	More than or equal to 40	143
Less than 50	227	More than or equal to 50	73
Less than 60	280	More than or equal to 60	60
Less than 70	300		

14.

Marks	Number of students
$0-20$	17
$20-40$	5
$40-60$	7
$60-80$	8
$80-100$	13

15. Rs 1263.15
16. $109.17 \mathrm{~km} / \mathrm{h}$
17. Rs 11875
18. 201.7 kg
19. (i) $\frac{1}{6}$ (ii) $\frac{5}{6}$
20. (i) $\frac{1}{6}$
(ii) $\frac{5}{12}$ (iii) 0
21. (i) $\frac{1}{9}$
(ii) $\frac{1}{9}$
(iii) 0
22. $\frac{4}{9}$
23. $\mathrm{P}(2)=\frac{1}{18}, \mathrm{P}(3)=\frac{1}{9}, \mathrm{P}(4)=\frac{1}{6}, \quad \mathrm{P}(5)=\frac{1}{6}, \mathrm{P}(6)=\frac{1}{6}, \mathrm{P}(7)=\frac{1}{6}, \mathrm{P}(8)=\frac{1}{9} \quad \mathrm{P}(9)=\frac{1}{18}$
24. $\frac{3}{4}$
25. (i) $\frac{1}{8}$ (ii) $\frac{1}{2}$
26. $\frac{2}{9}$
27. (i) $\frac{5}{11}$
(ii) $\frac{7}{22}$
(iii) $\frac{17}{22}$

EXEMPLAR PROBLEMS - CLASS X

28. (i) $\frac{13}{49}$
(ii) $\frac{3}{49}$
29. (i) $\frac{10}{49}$
(ii) $\frac{1}{49}$
30. (i) $\frac{1}{10}$
(ii) $\frac{3}{10}$
(iii) $\frac{3}{5}$
31. (i) $\frac{14}{99}$
(ii) $\frac{85}{99}$
32. (i) $\frac{1}{2}$
(ii) $\frac{9}{100}$
33. $\frac{21}{26}$
34. 0.69
35. $\frac{11}{75}$
36. $\mathrm{P}($ not defective $)=\frac{3}{4}, \mathrm{P}(2$ nd bulb defective $)=\frac{5}{23}$
37. (i) $\frac{4}{9}$
(ii) $\frac{5}{9}$
(iii) $\frac{1}{3}$
(iv) $\frac{5}{18}$
38. (i) $\frac{1}{8}$
(ii) $\frac{1}{8}$
(iii) $\frac{3}{4}$
39. (i) 5 scores $(0,1,2,6,7,12)$
(ii) $\frac{1}{3}$
40. (i) $\frac{7}{8}$
(ii) $\frac{15}{16}$
41. (i) $\frac{5}{6}$
(ii) $\frac{1}{3}$
42. (i) 0.009
(ii) $\frac{8}{999}$
[Hint : (ii) After first player has won the prize the number of perfect squares greater than 500 will be reduced by 1]

EXEMPLAR PROBLEMS - CLASS X

EXERCISE 13.4

1. 51.75
2. 48.41
3. 31 years
4. 201.96 g
5. Median salary = Rs 13420 , Modal salary $=$ Rs 12730
6. $f_{1}=28, f_{2}=24$ 9. $p=5, q=7$
7. Median $=17.81$ hectares, Mode $=17.76$ hectares
8. Median rainfall $=21.25 \mathrm{~cm}$
9. average $=170.3 \mathrm{sec}$.
10. (i)

Distance (in m)	No. of students	Cummulative frequency
$0-20$	6	6
$20-40$	11	17
$40-60$	17	34
$60-80$	12	46
$80-100$	4	50

(iii) 49.41 m .

