CHAPTER 8 : Quadrilaterals

Quadrilateral	Properties	
Rectangle	4 right angles and pair of opposite sides equal	
Square	4 right angles and 4 equal sides	
Parallelogram	Two pairs of parallel sides and opposite sides equal	
Rhombus	Parallelogram with 4 equal sides	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Trapezium	Two sides are parallel	
Kite	Two pairs of adjacent sides of the same length	

Theorems and Proofs (wherever required):

Theorem: 1

Statement : A diagonal of a parallelogram divides it into two congruent triangles.

Given : Parallelogram *ABCD*.

To prove : $\Delta BAC \cong \Delta DCA$.

Construction: Draw diagonal *AC*.

Proof: In $\triangle BAC$ and $\triangle DCA$, $\angle 1 = \angle 2$ (alternate interior angles)

 $\angle 3 = \angle 4$ (alternate interior angles)

AC = AC (common)

 $\Delta BAC \cong \Delta DCA$, (ASA)

Theorem: 2

Statement: In a parallelogram, opposite sides are equal.

Given : Parallelogram *ABCD*.

To prove:

$$AB = DC$$

$$AD = BC$$

Construction: Draw diagonal *AC*.

Proof: In $\triangle ABC$ and $\triangle CDA$,

AB || *DC* (since opposite sides of a parallelogram are parallel)

 $\angle BAC = \angle DCA$ (since these are alternate interior angles made by the transversal AC upon two parallel lines AB and DC)

Similarly, BC | AD (since opposite sides of a parallelogram are parallel)

 $\angle BCA = \angle DAC$ (since these are alternate interior angles made by the transversal AC upon two parallel lines BC and AD)

Also,

$$AC ext{ of } \Delta ABC = AC ext{ of } \Delta CDA ext{ (common sides)}$$

T1----

$$\triangle ABC \cong \triangle CDA \text{ (ASA)}$$

Thus,

$$AB = DC$$
 (c.p.c.t.)

and

$$AD = BC$$
 (c.p.c.t.)

Theorem: 3

Statement : If each pair of opposite sides of a quadrilateral are equal, then it is a parallelogram.

Given: A quadrilateral ABCD.

$$AB = CD$$
 and $BC = DA$

To prove : Quadrilateral *ABCD* is a parallelogram

Construction: Draw diagonal *AC*.

Proof: In $\triangle ABC$ and $\triangle CDA$,

$$AB = CD$$
 (given)
 $BC = DA$ (given)
 $AC = CA$ (common)
 $\Delta ABC \cong \Delta CDA$ (SSS)
 $\angle 1 = \angle 2$ (c.p.c.t.)
 $AB \parallel CD$

B ||CD|(i) (since $\angle 1$ and $\angle 2$ form a pair of alternate interior angles)

Also,

$$\angle 3 = \angle 4$$
 (c.p.c.t.)

$$BC \mid\mid DA$$

(since $\angle 3$ and $\angle 4$ form a pair of alternate interior angles)

From (i) and (ii), we get that *ABCD* is a parallelogram by definition.

Theorem: 4

Statement: In a parallelogram, opposite angles are equal.

Given : Parallelogram *ABCD*.

To prove:

$$\angle A = \angle C$$

$$\angle B = \angle D$$

Proof: In Parallelogram *ABCD*,

Consider

$$AD \parallel BC$$
 and AB transversal

$$\angle A + \angle B = 180^{\circ}$$

(co-interior angles)

....(i)

Now, consider $AB \parallel DC$ and BC transversal

$$\angle B + \angle C = 180^{\circ}$$

(co-interior angles)

....(ii)

From (i) and (ii) we get,

$$\angle A + \angle B = \angle B + \angle C$$

$$\angle A = \angle C$$

Similarly

$$\angle B = \angle D$$

Theorem: 5

Statement : In a quadrilateral, if each pair of opposite angles are equal, then it is a parallelogram.

Theorem: 6

Statement : The diagonals of a parallelogram bisect each other.

Given : Parallelogram *ABCD*.

Diagonals AC and BD intersect at O.

To prove : *AC* and *BD* bisect each other at *O*.

Thus, AC and BD bisect each other at O.

Proof: In $\triangle AOB$ and $\triangle COD$,

$$\angle 1 = \angle 3$$

(alternate interior angles)

$$AB = CD$$

(opposite sides of a parallelogram)

$$\angle 2 = \angle 4$$

(alternate interior angles)

$$\triangle AOB \cong \triangle COD$$

AO = CO

(ASA) (c.p.c.t.)

BO = DO

(c.p.c.t.)

and

Statement: If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

Given: Quadrilateral *ABCD*.

Diagonals AC and BD bisect each other at O.

To prove : Quadrilateral *ABCD* is a parallelogram.

Proof: In $\triangle AOB$ and $\triangle COD$.

$$AO = CO$$

(since the diagonals bisect each other at *O*)

$$BO = DO$$

(since the diagonals bisect each other at O) (since these are vertically opposite angles)

$$\angle AOB = \angle COD$$

(SAS)

$$\triangle AOB \cong \triangle COD$$
 $\angle 1 = \angle 2$

(c.p.c.t.)

But $\angle 1$ and $\angle 2$ form a pair of alternate interior angles made by the transversal AC upon two line segments AB and CD.

Hence,

Hence,

 $AB \parallel CD$

Similarly,

 $BC \mid\mid DA$

 \therefore Quadrilateral *ABCD* is a parallelogram by definition.

Theorem: 8

Statement : A quadrilateral is a parallelogram, if a pair of opposite sides are equal and parallel.

Theorem: 9

Statement: The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.

Given : $\triangle ABC$, *E* and *F* are the mid-points of the sides *AB* and *AC* respectively.

To prove : $EF \mid\mid BC$ and $EF = \frac{1}{2}BC$.

Construction: Draw a line *CD* parallel to *BA*. Let it intersects *EF* produced at *D*.

Proof: In $\triangle AEF$ and $\triangle CDF$,

$$\angle EAF = \angle FCD$$
 (alternate interior angles)
 $AF = FC$ (F is the mid-point of AC)
 $\angle AFE = \angle CFD$ (vertically opposite angles)
 $\Delta AEF \cong \Delta CDF$ (ASA)
 $EF = DF$ and $AE = DC$ (c.p.c.t.)
 $BE = AE = DC$ (E is the mid-point of AB)

Now BE = DC and $BE \parallel DC$ (opposite sides of a parallelogram)

Therefore, BCDE is a parallelogram.

This gives $EF \parallel BC$.

Also,
$$EF = DF \text{ and } EF + DF = ED = BC$$

 $2EF = BC$
 $EF = \frac{1}{2}BC$

Theorem: 10

Statement : The line drawn through the mid-points of one side of a triangle, parallel to another side bisects the third side.