CHAPTER 6: Lines and Angles

(i) Acute angle : $0^{\circ} < x < 90^{\circ}$

(iii) **Obtuse angle :** $90^{\circ} < x < 180^{\circ}$

(v) Reflex angle: $180^{\circ} < x < 360^{\circ}$

(vii) Right Angled Triangle

$$x = 90^{\circ}; y < 90^{\circ}; z < 90^{\circ}$$

(ii) **Right angle :** $x = 90^{\circ}$

(iv) Straight angle : $x = 180^{\circ}$

(vi) Complete angle : $x = 360^{\circ}$

(viii) Acute Angled Triangle

$$x < 90^{\circ}; y < 90^{\circ}; z < 90^{\circ}$$

(ix) Obtuse Angled Triangle

$$x > 90^{\circ}; y < 90^{\circ}; z < 90^{\circ}$$

(x) Equilateral Triangle

$$AB = BC = CA$$

 $\angle A = \angle B = \angle C = 60^{\circ}$

(xi) Isosceles Triangle

$$AB = AC \neq BC$$

$$\angle B = \angle C \neq \angle A$$

(xii) Scalene Triangle

 $AB \neq BC \neq CA$

(xiii) Linear Pair

when $x + y = 180^{\circ}$

Complementary Angles: Sum of two angles is 90° (like 30° and 60°, 10° and 80°)

Supplementary Angles: Sum of two angles is 180° (like 100° and 80°, 60° and 120°)

Two angles are called adjacent angles, if:

- (i) they have the same vertex,
- (ii) they have a common arm and
- (iii) uncommon arms are on opposite side of the common arm.

Parallel Lines and Transversal:

- l||m| and t is transversal,
- Corresponding Angles Pair : $(\angle 1, \angle 5)$, $(\angle 4, \angle 8)$, $(\angle 2, \angle 6)$, $(\angle 3, \angle 7)$

Property : They are equal ($\angle 1 = \angle 5$, $\angle 4 = \angle 8$ etc...)

• Vertically Opposite Angles Pair : $(\angle 1, \angle 3)$, $(\angle 2, \angle 4)$, $(\angle 6, \angle 8)$, $(\angle 5, \angle 7)$

Property : They are equal ($\angle 1 = \angle 3$, $\angle 2 = \angle 4$ etc...)

• Alternate Interior Angles Pair : $(\angle 2, \angle 8), (\angle 5, \angle 3)$

Property : They are equal ($\angle 2 = \angle 8$, $\angle 5 = \angle 3$)

• Alternate Exterior Angles Pair : $(\angle 1, \angle 7), (\angle 4, \angle 6)$

Property : They are equal $(\angle 1 = \angle 7, \angle 4 = \angle 6)$

• Consecutive Interior Angles : $(\angle 2, \angle 5), (\angle 3, \angle 8)$

Property : They are supplementary ($\angle 2 + \angle 5 = 180^{\circ}$, $\angle 3 + \angle 8 = 180^{\circ}$)

Theorems and Proofs

Theorem 1

Statement: If two lines intersect each other, then the vertically opposite angles are equal.

Given: POQ and SOR are straight lines

To Prove : $\angle POR = \angle SOQ$ and $\angle POS = \angle ROQ$

Proof:

In the given figure

$$\angle POR + \angle POS = 180^{\circ}$$

...(i) (Linear Pair)

$$\angle SOQ + \angle POS = 180^{\circ}$$

...(ii) (Linear Pair)

Comparing equation (i) and (ii), we get:

$$\angle POR + \angle POS = \angle SOQ + \angle POS$$

Therefore $\angle POR = \angle SOQ$

Similarly $\angle POS = \angle ROQ$

Hence Proved.

Theorem 2

Statement: If a transversal intersects two parallel lines, then each pair of alternate interior angles are equal.

Given: AB || CD and PQ is the transversal,

x and *y* are alternate interior angles

To Prove : x = y

Proof:

In the given figure

 $\angle PRB = y$...(i) (Corresponding Angles)

 $\angle PRB = x$...(ii) (Vertically Opposite Angles)

From equation (i) and (ii), we get

$$x = y$$
,

Hence Proved.

Theorem 3

Statement: If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel.

Theorem 4

Statement : If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.

Theorem 5

Statement : If a transversal intersects two lines such that a pair of interior angles on the same side of the transversal is supplementary, then the two lines are parallel.

Theorem 6

Statement : Lines which are parallel to the same line are parallel to each other.

Theorem 7

Statement : The sum of the angles of a triangle is 180°

To prove : Sum of all the angles of $\triangle ABC$ is 180°.

Construction: Draw a line *l* parallel to BC.

Proof: Since l || BC, we have $\angle 2 = \angle y$...(i) (Alternate angles are equal)

Similarly

$$\angle 1 = \angle z$$

...(ii) (Alternate angles are equal)

Also, sum of angles at a point A on line l is 180°.

$$\angle 2 + \angle x + \angle 1 = 180^{\circ}$$

$$\angle y + \angle x + \angle z = 180^{\circ}$$

$$\angle x + \angle y + \angle z = 180^{\circ}$$

Therefore,

 \Rightarrow

sum of all the angles of Δ is 180°.

(from (i) and (ii))

Theorem 8

Statement: If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of

the two interior opposite angles.

Given: A triangle *ABC* with interior angles

x, y and z, and exterior angle 'e'.

To Prove : e = x + y

Proof: In the figure,:

 $x + y + z = 180^{\circ}$...(i) (Angle Sum Property of Δ)

 $e + z = 180^{\circ}$...(ii) (Linear Pair)

Comparing equation (i) and (ii)

$$x + y + z = e + z$$

therefore, x + y = e.

Hence Proved.