CHAPTER 7: Triangles

Fundamentals:

- The geometrical figures of same shape and size are congruent to each other.
- Two circles of equal radii are congruent to each other.
- Two squares of equal edges are congruent.
- If two triangles \overrightarrow{ABC} and \overrightarrow{PQR} are congruent under the correspondence $A \leftrightarrow P$, $B \leftrightarrow Q$ and $C \leftrightarrow R$, then symbolically it is expressed as $\Delta ABC \cong \Delta PQR$.
- Two triangles are congruent if and only if their corresponding sides and the corresponding angles are equal.

Congruence Criteria:

- **Axiom**>*SAS* **Congruence Rule**: Two triangles are congruent if any two sides and the included angle of one triangle are equal to the sides and the included angle of the other triangle.
- **Theorem** > AAS Congruence Rule: Two triangles are congruent if any two pairs of angles and one pair of corresponding sides are equal.

Theorems and Proofs(wherever required)

Theorem 1

Statement : *ASA* **Congruence Rule :** Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle.

Proof: We are given two triangles *ABC* and *PQR* in which:

$$\angle B = \angle Q, \angle C = \angle R$$

and
$$BC = QR$$

We need to prove that $\triangle ABC \cong \triangle PQR$

There are three cases.

Case
$$I : Let AB = PQ$$

In $\triangle ABC$ and $\triangle PQR$,

$$\angle B = \angle Q$$
 $BC = QR$
 $AB = PQ$
 $\Delta ABC \cong \angle PQR$

Case II: Suppose

$$AB \neq PQ$$
 and $AB < PQ$

Take a point S on PQ such that QS = AB

Join RS.

In $\triangle ABC$ and $\triangle SQR$,

$$AB = SQ$$
 (By construction)
 $BC = QR$ (Given)
 $\angle B = \angle Q$ (Given)
 $\Delta ABC \cong \angle SQR$ (By SAS rule)
 $\angle ACB = \angle QRS$ (By c.p.c.t.)

But ⇒

$$\angle QRP = \angle ACB$$

$$\angle QRP = \angle QRS$$

which is impossible unless ray RS coincides with RP.

 \therefore AB must be equal to PQ.

So,
$$\Delta ABC \cong \Delta PQR$$

Case III : If AB > PQ.

We can choose a point T on AB such that TB = PQ and repeating the arguments as given in Case II, we can conclude that AB = PQ and so,

$$\triangle ABC \cong \triangle PQR$$

Theorem 2

Statement : Angles opposite to equal sides of an isosceles triangle are equal.

Given: $\triangle ABC$ is an isosceles in which AB = AC

To prove : $\angle B = \angle C$

Construction: Draw the bisector of $\angle A$. Let D be the point of intersection of this bisector of $\angle A$ on BC.

Proof: In $\triangle BAD$ and $\triangle CAD$,

$$BA = CA$$
 (Given)
$$\angle BAD = \angle CAD$$
 (By construction)
$$AD = AD$$
 (Common)
$$\Delta BAD \cong \Delta CAD$$
 (By SAS congruence)
$$\angle DBA = \angle DCA$$
 (By c.p.c.t.)
$$\angle B = \angle C$$
 Hence Proved.

Theorem 3

Statement : The sides opposite to equal angles of a triangle are equal.

Theorem 4

Statement : *SSS* **Congruence Rule :** If three sides of a triangle are equal to the three sides of another triangle, then the two triangles are congruent.

Theorem 5

Statement : *RHS* Congruence Rule : If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent.

Theorem 6

Statement : If two sides of a triangle are unequal, the angle opposite to the longer side is larger (or greater).

Theorem 7

Statement: In any triangle, the side opposite to the larger (greater) angle is longer.

Theorem 8

Statement : The sum of any two sides of a triangle is greater than third side.

Tips:

- In an isosceles triangle bisector of the vertical angle of a triangle bisects the base.
- The medians of an equilateral triangle are equal in length.
- Each angle of equilateral triangle is of 60°.
- A point equidistant from two intersecting lines lies on the bisector of the angles formed by the two lines.
- In a triangle,
 - (i) angle opposite to the longer side is larger (greater).
 - (ii) side opposite to the larger (greater) angle is longer.
 - (iii) sum of any two sides is greater than the third side.
 - (iv) difference of any two sides of a triangle is less than the third side.