Arithmetic Progression

Key Points

1. Sequence: A set of numbers arranged in some definite order and formed according to some rules is called a sequence.
2. Arithmetic Progression: A sequence in which the difference of each term from its succeeding term is constant throughout, is called an arithmetic sequence or arithmetic progression (A.P.).

In other words A.P. is squence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ such that $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$ $=$. $\ldots a_{\mathrm{n}}-a_{\mathrm{n}-1}=d$ and so on.
3. General Term: If ' a ' is the first term and ' d ' is common difference in an A.P., then nth term (general term) is given by $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}$.
4. Sum of \mathbf{n} Terms of an A.P. : If ' a ' is the first term and ' d ' is the common difference of an A.P., then sum of first n terms is given by

$$
\mathrm{S}_{n}=\frac{n}{2}\{2 a+(n-1) d\}
$$

If ' a ' is the first term \& ' l ' is the last/nth term of a finite A.P., then the sum is given by

$$
\mathrm{S}_{n}=\frac{n}{2}\{a+l\}
$$

5. (i) If a_{n} is given, then common difference $d=a_{n}-a_{n-1}$
(ii) If \mathbf{S}_{n} is given, then nth term is given by $\boldsymbol{a}_{n}=\mathbf{S}_{n}-\mathbf{S}_{\boldsymbol{n}} \mathbf{- 1}$
(iii) If a, b, c are in A.P., then $2 b=a+c$
(iv) If a sequence has n terms, its rth term from the end $=(n-r+l)^{\text {th }}$ term from the beginning.
(v) Difference of mth and $\mathrm{n}^{\text {th }}$ term of an A.P. $=(m-n) d$.
