Chapter - 6

(Lines and Angles)

Key Concepts

- (1) Point We often represent a point by a fine dot made with a fine sharpened pencil on a piece of paper.
- (2) Line A line is completely known if we are given any two distinct points. Line AB is represented by as \overrightarrow{AB} . A line or a straight line extends indefinitely in both the directions.

(3) Line segment - A part (or portion) of a line with two end points is called a line segment.

(4) Ray - A part of line with one end point is called a ray.

(5) Collinear points - If three or more points lie on the same line, they are called collinear points otherwise they are called non-collinear points.

Types of Angles -

- (1) Acute angle An acute angle measure between 0^0 and 90^0 .
- (2) **Right angle -** A right angle is exactly equal to 90° .
- (3) **Obtuse angle -** An angle greater than 90° but less than 180° .
- (4) **Straight angle -** A straight angle is equal to 180° .
- (5) **Reflex angle -** An angle which is greater than 180° but less than 360° is called a reflex angle.
- (6) **Complementary angles -** Two angles whose sum is 90⁰ are called complementary angles.

- (7) **Supplementary angle -** Two angles whose sum is 180⁰ are called supplementary angles.
- (8) **Adjacent angles -** Two angles are adjacent, if they have a common vertex, a common arm and their non common arms are on different sides of common arm.
- (9) **Linear pair -** Two angles form a linear pair, if their non-common arms form a line.
- (10) Vertically opposite angles Vertically opposite angles are formed when two lines intersect each other at a point.

TRANSVERSAL

- (a) Corresponding angles
- (b) Alternate interior angles
- (c) Alternate exterior angles
- (d) Interior angles on the same side of the transversal.
- * If a transversal intersects two parallel lines, then
 - (i) each pair of corresponding angles is equal.
 - (ii) each pair of alternate interior angles is equal.
 - (iii) each pair of interior angle on the same side of the transversal is supplementary.
- * If a transversal interacts two lines such that, either
 - (i) any one pair of corresponding angles is equal, or
 - (ii) any one pair of alternate interior angles is equal or
 - (iii) any one pair of interior angles on the same side of the transversal is supplementary then the lines are parallel.
- * Lines which are parallel to a given line are parallel to each other.
- * The sum of the three angles of a triangle is 180°.
- * If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Section - A

Q.1 In the given figure, $x = 30^{\circ}$

The value of y is

- (a) 10^0
- (b) 40^0
- (c) 36°
- (d) 45^0

- Q.2 An exterior angle of a triangle is 75⁰ and its two interior opposite angles are equal. Each of these equal angles is
 - (a) 105^0
- (b) 50.5⁰
- (c) 52^0
- (d) 37.5°

- Q.3 The compliment of an angle 'm' is:
 - (a) m
- (b) 90^{0} +m
- (c) 90^{0} -m
- (d) m $\times 90^{0}$
- Q.4 If one angle of a triangle is equal to the sum of the other two equal angles, then the triangle is
 - (a) an isosceles triangle
- (b) an obtuse triangle
- (c) an equilateral triangle
- (d) a right triangle
- Q.5 In the given figure $\angle a$ and $\angle b$ form a linear pair if a-b = 100° then a and b are
 - (a) 120° , 20°
- (b) 40° , 140°
- (c) 50^{0} , 150^{0}
- (d) 140^0 , 40^0

- Q.6 Angle of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is
 - (a) 60^{0}
- (b) 40^0
- (c) 80^0
- (d) 20^0

Section - B

- Q.7 Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.
- Q.8 In the following figures which of the two lines are parallel and why?

(i) (ii)

Q.9 In the given fig. sides QP and RQ of ΔPQR are produced to point S and T respectively. If $\angle PQT = 110^{0}$ and $\angle SPR = 135^{0}$ find $\angle PRQ$

Q.10 In the fig. $l_1 \parallel l_2$ and $m_1 \parallel m_2$ if $\angle 1 = 115^0$ find $\angle 2$

- Q.11 Sum of two angles of a triangle is 90° and their difference is 50°. Find all the angles of the triangle.
- Q.12 In the adjoining figure, $AB \parallel DE$, find the value of x.

Section - C

Q.13 In the given figure AB and CD intersect each other at O. If $\angle AOE = 75^{\circ}$ find the value of x, y and z.

- Q.14 Prove that vertically opposite angle are equal.
- Q.15 In the given figure x = y and a = b prove that $l \parallel n$

Q.16 In the given figure $DE \parallel QR$ and AP and BP are bisectors of $\angle EAB$ and $\angle RBA$ respectively find $\angle APB$

- Q.17 The angles of a triangle are in the ratio 2: 3: 5 find the angles of the triangle.
- Q.18 Find x and y in the following figure.

Q.19 In figure find x.

Section - D

- Q.20 Prove that sum of the angles of triangle is 180°.
- Prove that sum of the angles of a hexagon is 720°.
- The angles of a triangle are $(x-40^{\circ})$, $(x-20^{\circ})$ and $(\frac{1}{2}x-10)^{\circ}$ find the value of x.
- Q.23 In the given figure, AD and CE are the angle bisectors of $\angle A$ and $\angle C$ respectively If $\angle ABC = 90^{\circ}$ then find $\angle AOC$

Q.24 A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angle so formed are parallel.

Answer:

- (2) d (1) b
- (3) c
- (4) a,d
- (5) d
- (6) b

- $(9) 65^0$
- (10) 115^{0} (11) 20^{0} , 70^{0} , 90^{0} (12) 95^{0} (13) 84^{0} , 21^{0} , 48^{0}
 - (16)

 90^{0}

- $(17) 36^{0}, 54^{0}, 90^{0}$ $(18) 48^{0}, 12^{0}$ $(19) 30^{0}$
- $(22)\ 100^{0}$

 $(23)\ 135^{0}$