CHAPTER 11: Constructions

• To divide a line segment internally in a given ratio m:n, where both m and n are positive integers.

Steps of Construction:

Step 1: Draw a line segment *AB* of given length by using a ruler.

Step 2: Draw any ray AX making an acute angle with AB.

Step 3: Along *AX* mark off (m + n) points $A_1, A_2, \dots, A_m, A_{m+1}, \dots, A_{m+n}$ such that $AA_1 = A_1A_2 = A_{m+n-1}A_{m+n}$.

Step 4: Join BA_{m+n} .

Step 5 : Through the point A_m draw a line parallel to $A_{m+n}B$ by making an angle equal to $\angle AA_{m+n}B$ at A_m .

Suppose this line meets AB at point P.

The point P so obtained is the required point which divides AB internally in the ratio m:n.

• Construction of triangles similar to a given triangle :

Steps of Construction : (a) when m < n,

Step 1: Construct the given triangle *ABC* by using the given data.

Step 2: Take any one of the three sides of the given triangle as base. Let *AB* be the base of the given triangle.

Step 3: At one end, say A, of base AB, Construct an acute $\angle BAX$ below the base AB.

Step 5: Join A_nB .

Step 6: Draw $A_m B$ parallel to $A_n B$ which meets AB at B'.

Step 7: From B' draw $B'C' \mid\mid CB$ meeting AC at C'.

Triangle *AB'C'* is the required triangle each of whose sides is $\left(\frac{m}{n}\right)^{th}$ of the corresponding side of $\triangle ABC$.

Steps of Construction : (b) when m > n,

Step 1: Construct the given triangle by using the given data.

Step 2: Take any one of the three sides of the given triangle and consider it as the base. Let AB be the base of the given triangle.

Step 3 : At one end, say A, of base AB, construct an acute $\angle BAX$ below base AB *i.e.*, on the opposite side of the vertex C.

Step 5: Join $A_n B$ to B and draw a line through A_m parallel to $A_n B$, intersecting the extended line segment AB at B',

Step 6: Draw a line through B' parallel to BC intersecting the extended line segment AC at C'.

Step 7: $\triangle AB'C'$ so obtained is the required triangles, each of whose sides is $\left(\frac{m}{n}\right)^{\text{th}}$ of the corresponding side of $\triangle ABC$.

• To draw the tangent to a circle at a given point on it, when the centre of the circle is known.

Given: A circle with centre *O* and a point *P* on it.

Required: To draw the tangent to the circle at *P*.

Steps of construction:

(i) Join *OP*,

(ii) Draw a line AB perpendicular to OP at the point P, APB is the required tangent at P,

• To draw the tangent to a circle from a point outside it (external point) when its centre is known.

Given : A circle with centre *O* and a point *P* outside it.

Required: To construct the tangents to the circle from *P*.

Steps of construction:

(i) Join *OP* and bisect it. Let *M* be the mid point of *OP*.

(ii) Taking M as centre and MO as radius, draw a circle to intersect C(O, r) in two points, say A and B.

(iii) Join PA and PB. These are the required tangents from P to C(O, r).

