CHAPTER 10 : Circles

- A circle is a collection (set) of all those points in a plane, each one of which is at a constant distance from a fixed point in the plane.
- The fixed point is called the centre and the constant distance is called the radius of the circle.
- A line segment joining two points on a circle is called the chord of the circle.
- A chord passing through the centre of the circle is called a diameter of the circle.
- A line which meets a circle in two points is called a secant of the circle.

- A (continuous) part of a circle is called an arc of the circle.
- Minor and Major Arcs: An arc less than one-half of the whole arc of a circle is called the minor arc of the circle, and an arc greater than one-half of the whole arc of a circle is called the major arc of the circle.

- Diameter = $2 \times \text{Radius}$.
- Sector of a Circle: The part of the plane region enclosed by an arc of a circle and its two bounding radii is called a sector of a circle.
- **Segment of a Circle:** A chord of a circle divides it into two parts. Each part is called a segment. The part containing the minor arc is called the minor segment, and the part containing the major arc is called the major segment.

 A quadrilateral of which all the four vertices lie on a circle is called a cyclic quadrilateral. The four vertices A, B, C and D are said to be concyclic points.

- The diameter of circle is its longest chord.
- A line can meet a circle at the most two points.
- The degree measure of a semi-circle is 180°.
- The degree measure of a circle is 360°.

Theorems and Proof (wherever required):

Theorem: 1

Statement : Equal chords of a circle subtend equal angles at the centre.

Given : AB and CD are chords of a circle with centre O, such that AB = CD.

To prove:

$$\angle AOB = \angle COD$$
.

Proof: In $\triangle AOB$ and $\triangle COD$,

$$AO = CO$$
 (radii of the same circle)
 $BO = DO$ (radii of the same circle)
 $AB = CD$ (given)
 $\Delta AOB \cong \Delta COD$ (SSS)

Hence,

Theorem: 2

Statement : If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.

 $\angle AOB = \angle COD$ (c.p.c.t.)

Given : Two chords PQ and RS of a circle C(O, r), such that $\angle POQ = \angle ROS$.

To prove : PQ = RS.

Proof: In $\triangle POQ$ and $\triangle ROS$,

$$OP = OQ = OR = OS = r$$
 (radii of the same circle)

and $\angle POQ = \angle ROS$

$$\Delta POQ \cong \Delta ROS$$

$$PQ = RS$$
.

Theorem: 3

Statement : The perpendicular from the centre of a circle to a chord bisects the chord.

Given: AB is the chord of a circle with centre O and $OD \perp AB$.

To prove : AD = DB

Construction: Join OA and OB **Proof**: In $\triangle ODA$ and $\triangle ODB$,

$$OA = OB$$
 (radii of the same circle)
 $OD = OD$ (common)

$$\angle ODA = \angle ODB$$
 (each is a right angle)

$$\triangle ODA \cong \triangle ODB$$
 (R.H.S.)

$$AD = DB$$
 (c.p.c.t.)

Theorem: 4

Statement: The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.

Given: A chord PQ of a circle C(O, r) and L is the mid-point of PQ.

To prove : $OL \perp PQ$.

Construction: Join *OP* and *OQ*.

Proof: In $\triangle OLP$ and $\triangle OLQ$,

$$OP = OQ$$
 (radii of the same circle)

$$PL = QL$$
 (given)

$$OL = OL$$
 (common)

$$\Delta OLP \cong \Delta OLQ$$
 (SSS)

$$\angle OLP = \angle OLQ$$
 (by c.p.c.t)

Also,
$$\angle OLP + \angle OLQ = 180^{\circ}$$
 (linear pair)

$$\angle OLP = \angle OLQ = 90^{\circ}$$

Hence, $OL \perp PQ$.

Theorem: 5

Statement: There is one and only one circle passing through three given non-collinear points.

Theorem: 6

Statement: Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres).

Given : *AB* and *CD* are two equal chords of a circle.

OM and *ON* are perpendiculars from the centre to the chords *AB* and *CD*.

To prove :
$$OM = ON$$
.

Construction: Join *OA* and *OC*.

Proof: In $\triangle AOM$ and $\triangle CON$,

$$OA = OC$$
 (radii of the same circle)

$$MA = CN$$
 (since OM and ON are perpendicular to

the chords and it bisects the two equal chord and AM = MB, CN = ND)

$$\angle OMA = \angle ONC = 90^{\circ}$$

$$\triangle AOM \cong \triangle CON \qquad (R.H.S.)$$

$$\therefore OM = ON \qquad (c.p.c.t.)$$

Equal chords of a circle are equidistant from the centre.

Theorem: 7

Statement: Chords equidistant from the centre of a circle are equal in length.

Given : OM and ON are perpendiculars from the centre to the chords AB and CD and OM = ON.

To prove : Chord AB = Chord CD.

Construction: Join *OA* and *OC*.

Proof:

$$OM \perp AB \Rightarrow \frac{1}{2} AB = AM$$
 [Theorem 3]

$$ON \perp CD \Rightarrow \frac{1}{2} CD = CN$$

Ν

Consider $\triangle AOM$ and $\triangle CON$,

$$OA = OC$$
 (radii of the same circle)
 $OM = ON$ (given)
 $\angle OMA = \angle ONC = 90^{\circ}$ (given)
 $\Delta AOM \cong \Delta CON$ (RHS congruency)
 $AM = CN \Rightarrow \frac{1}{2}AB = \frac{1}{2}CD \Rightarrow AB = CD$

The two chords are equal if they are equidistant from the centre.

Theorem: 8

Statement : The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Given: O is the centre of the circle.

To prove : $\angle BOC = 2\angle BAC$ **Construction** : Join *O* to *A*.

Construction: Join O to A.

Proof: In $\triangle AOB$, OA = OB (radii of the same circle)

 \Rightarrow $\angle 1 = \angle 2$

Similarly, in $\triangle AOC$ $\angle 3 = \angle 4$

Now, by exterior angle property, $\angle 5 = \angle 1 + \angle 2$ $\angle 6 = \angle 3 + \angle 4$

25 + 26 = 21 + 22 + 23 + 24 25 + 26 = 222 + 223

 $=2(\angle 2+\angle 3)$

 $\angle BOC = 2\angle BAC$

Theorem: 9

Statement: Angles in the same segment of a circle are equal.

Given : Two angles $\angle ACB$ and $\angle ADB$ are in the same segment of a circle C(O, r).

To prove : $\angle ACB = \angle ADB$

Construction: Join *OA* and *OB*.

fig. (i)

fig. (ii)

Proof: In fig. (i)

We know that, angle subtended by an arc of a circle at the centre is double the angle subtended by the arc in the alternate segment.

Hence,

 $\angle AOB = 2\angle ACB$ $\angle AOB = 2\angle ADB$

 $\angle ACB = \angle ADB$

So, In fig. (ii), we have,

Reflex $\angle AOB = 2\angle ACB$

and Reflex $\angle AOB = 2\angle ADB$

 $2\angle ACB = 2\angle ADB$

 $\angle ACB = \angle ADB$.

Theorem: 10

Statement : If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle (*i.e.* they are concyclic).

Theorem: 11

Statement: The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.

Given: Let *ABCD* be a cyclic quadrilateral

To prove : $\angle A + \angle C = 180^{\circ} \text{ and } \angle B + \angle D = 180^{\circ}$

Construction: Join OB and OD.

Proof:

$$\angle BOD = 2 \angle BAD$$

$$\angle BAD = \frac{1}{2} \angle BOD$$

reflex

Similarly,
$$\angle BCD = \frac{1}{2} \text{ reflex } \angle BOD$$

$$\angle BAD + \angle BCD = \frac{1}{2} \angle BOD + \frac{1}{2} \operatorname{reflex} \angle BOD$$

$$= \frac{1}{2} (\angle BOD + \operatorname{reflex} \angle BOD)$$

$$=\frac{1}{2}\times360^{\circ}$$

$$\angle A + \angle C = 180^{\circ}$$

Similarly, $\angle B + \angle D = 180^{\circ}$

Theorem: 12

Statement : If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.