Chapter

Similar Triangles

Key Points

1. Similar Triangles : Two triangles are said to be similar if their corresponding angles are equal and their corresponding sides are proportional.
2. Criteria for Similarity :
in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
(i) AAA Similarity : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ when $\angle \mathrm{A} \angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$
(ii) SAS similarity :
$\Delta \mathrm{ABC} \sim \triangle \mathrm{DEF}$ when $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$ and $\angle \mathrm{B}=\angle \mathrm{E}$
(iii) SSS Similarty: $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
3. The proof of the following theorems can be asked in the exmination :
(i) Basic Proportionality Theoren: If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio.
(ii) The ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
(iii) Pythagoras Theorm: In a right triangles the square of the hypotenuse is equal to the sum of the squares of the other two sides.
(iv) Converse of pythagoras thearem- In a triangle, if the square of one side is equal to the sum of squares of other two sides then the angle oppo site to the first side is a right angle
4. Is the triangle with sides 12 cm , and 18 cm a right triangle? Give reason.
5. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$, then find the length of PR.

Mathematics-X

3. In the fig., $\mathrm{LM}=\mathrm{LN}=46^{\circ}$, Express x in terms of a, b and c.

4. In fig. $\triangle \mathrm{AHK} \sim \Delta \mathrm{ABC}$. If $\mathrm{AK}=10 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\mathrm{HK}=7 \mathrm{~cm}$, find AC .

5. It is given that $\triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ}$. Is it trne to say that $\angle \mathrm{D}=\angle \mathrm{R}$ and $\angle \mathrm{F}=\angle \mathrm{P}$?
6. If the corresponding Medians of two similar triangles are in the ratio $5: 7$, Then Find the ratio of their sides.
7. A right angled triangle has its area numerically equal to its perimeter. The length of each side is an even number and the hypotenuse is 10 cm . What is the perimeter of the triangle?
8. An aeroplane leaves an airport and flies due west at a speed of $2100 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same place at airport and flies due south at a speed of $2000 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after 1 hour?
9. The areas of two similar $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are $225 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle $\triangle \mathrm{ABC}$ be 30 cm , find the langest side of the smaller triangle DEF.
10. In the figure, if $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$, find the value of x ?

11. In the figure, $X Y \| Q R$ and $\frac{P X}{X Q}=\frac{P Y}{Y R}=\frac{1}{2}$, find $X Y: Q R$

12. In figure, find the value of x which will make $D E \| A B$?

13. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{BC}=3 \mathrm{EF}$ and ar $(\triangle \mathrm{ABC})=117 \mathrm{~cm}^{2}$ find area $(\triangle \mathrm{DEF})$.
14. If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar triangles such that $\angle \mathrm{A}=45^{\circ}$ and $\angle \mathrm{F}=56^{\circ}$, then find $\angle \mathrm{C}$.
15. If the ratio of the corresponding sides of two similar triangles is $2: 3$, then find the ratio of their corresponding attitudes.

SHORT ANSWERTYPE (I) QUESTIONS

16. In the given fig. $\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=26 \mathrm{~cm}, \angle \mathrm{PAR}=90^{\circ}, \mathrm{PA}=6 \mathrm{~cm}$ and $\mathrm{AR}=$ 8 cm , find $\angle \mathrm{QPR}$.

17. In the given fig., $D E \| A C$ and $D F \| A E$. Prove that

$$
\frac{\mathrm{FE}}{\mathrm{BF}}=\frac{\mathrm{EC}}{\mathrm{BE}}
$$

Mathematics-X

18. In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$ Such that $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$. Prove that $\triangle \mathrm{ABC}$ is right angled at A .
19. In the given fig, D and E are points on sides $A B$ and $C A$ of $\triangle A B C$ such that $\angle B=\angle A E D$. Show that $\triangle A B C \sim \triangle A E D$.

20. In the given fig., $\mathrm{AB} \| \mathrm{DC}$ and diagonals AC and BD intersects at O . If $\mathrm{OA}=3 x$ -1 and $\mathrm{OB}=2 x+1, \mathrm{OC}=5 x-3$ and $\mathrm{OD}=6 x-5$, find x.

21. In the fig, $P Q R$ is a triangle, right angled at Q. If $X Y \| Q R, P Q=6 \mathrm{~cm}, P Y=$ $4 \mathrm{~cm} \& \mathrm{PX}: \mathrm{XQ}=1: 2$ Calculate the lengths of $P R$ and $Q R$.

22. In the figure, $A B \| D E$. Find the length of $C D$.

23. In the figure, ABCD is a parallelogram. AE divides the line segment BD in the ratio $1: 2$. If $\mathrm{BE}=1.5 \mathrm{~cm}$ find BC .

24. In the given figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=115^{\circ}$ and $\angle \mathrm{CDO}=70$ find, (i) $\angle \mathrm{DOC}$, (ii) $\angle \mathrm{DCO}$, (iii) $\angle \mathrm{OAB}$, (iv) $\angle \mathrm{OBA}$.

25. Perimeter of two equilateral triangles $A B C$ and $P Q R$ are 144 m and 96 m , find ar ($\triangle \mathrm{ABC}):$ ar ($\triangle \mathrm{PQR}$)

SHORT ANSWER TYPE (II) QUESTION

26. In the figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle 1=\angle 2$ them prove that $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$

27. In equilateral $\triangle A B C, A D \perp B C$. Prove that $3 B C^{2}=4 A D^{2}$.
28. In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$, also $\mathrm{CD} \perp \mathrm{AB}$, Prove that $\frac{\mathrm{BC}^{2}}{\mathrm{AC}^{2}}=\frac{\mathrm{BD}}{\mathrm{AD}}$.

Mathematics-X

29. In the adjoining figure $\triangle \mathrm{ABC} \& \triangle \mathrm{DBC}$ are on the same base $\mathrm{BC} . \mathrm{AD} \& \mathrm{BC}$ intersect at O. Prove that $\frac{\text { area }(\triangle \mathrm{ABC})}{\text { area }(\square \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

30. In $\triangle A B C$, If $A D$ is the median, Show that $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
31. In $\triangle A B C, \angle C$ is a right angle. Points $P \& Q$ lies on the sides $C A \& C B$ respectively Prove that $\mathrm{AQ}^{2}+\mathrm{BP}^{2}=\mathrm{AB}^{2}+\mathrm{PQ}^{2}$
32. If $A D$ and $P S$ are medians of $\triangle A B C$ and $\triangle P Q R$ respectively where $\triangle A B C \sim$ $\triangle \mathrm{PQR}$, Prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PS}}$.
33. In an equilateral $\triangle A B C, A D \perp B C$, Prove that $3 A B^{2}=4 A D^{2}$
34. In the given fig, $\mathrm{DE} \| \mathrm{AC}$. which of the following is correct?
$x=\frac{a+b}{a y} \quad$ or $\quad x=\frac{a y}{a+b}$

35. Prove that the sum of the square of the sides of a rhombus is equal to the sum of the squares of its diagonals;
36. A street light bulb is fixed on a pole 6 m above the level of the street. If a woman of height 1.5 m casts a shadow of 3 m , find how for she is away from the base of the pole.
37. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is gives by $\frac{a b}{a+b}$ metres.
38. In the given fig., find the value of x in terms of a, b and c

39. In fig., $\mathrm{AB}\|\mathrm{PQ}\| \mathrm{CD}, \mathrm{AB}=x$ units. $\mathrm{CD}=y$ units and $\mathrm{PQ}=z$ units. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

40. In the given fig., $\frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{TR}}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$. Prove that PQR is an isosceles Δ.

41. In the figure, D is a point on the side BC of $\triangle \mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$ Prove that $\frac{C A}{C D}=\frac{C B}{C A}$

Mathematics-X

42. In the figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$, the diagonals $\mathrm{AC} \& \mathrm{BD}$ intersect at O. Prove that $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{DO}}$

43. In the figure, a point O inside $\triangle \mathrm{ABC}$ is joined to its vertices. From a point D on AO, DE is drawn parallel to AB \& from E, EF is drawn parallel to BC . Prove that $\mathrm{DF} \| \mathrm{AC}$.

44. Two triangles BAC and BDC , right angled at A and D respectively, are drawn on the same base BC and on the same side of BC . If AC and DB intersect at P , Prove that $\mathrm{AP} \times \mathrm{PC}=\mathrm{DP} \times \mathrm{PB}$

45. Hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is larger than the other by 5 cm , find the lengths of the other two sides.

LONG ANSWER TYPE QUESTIONS

46. In the following figur, $\mathrm{DE} \| \mathrm{AC}$ and $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BC}}{\mathrm{CP}}$. Prove that $\mathrm{DC} \| \mathrm{AP}$.

47. In a quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=90^{\circ}, \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$. Prove that $\angle \mathrm{ACD}$ $=90^{\circ}$

48. In figure, $\mathrm{DE} \| \mathrm{BC}, \mathrm{DE}=3 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and $\operatorname{ar}(\triangle \mathrm{ADE})=30 \mathrm{~cm}^{2}$. Find ar (trap. BCED).

49. State and prove Pythagoras theorem.
50. In an equilateral $\triangle \mathrm{ABC}, \mathrm{D}$ is a point on side BC such that $\mathrm{BD}=\frac{1}{3} \mathrm{BC}$. Prove that $9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$.
51. $\mathrm{IN} \triangle \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR . If $\mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c$ and DR $=\mathrm{d}$ and a, b, c, d are positive units. Prove that $(a+b)(a-b)=(c+d)(c-d)$.
52. In a trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{DC}=2 \mathrm{AB}$. If EF is drawn parallel to AB cuts AD in F and BC in E such that $\frac{\mathrm{BE}}{\mathrm{BC}}=\frac{3}{4}$. Diagonals DB intersects EF at G Prove that $7 \mathrm{EF}=10 \mathrm{AB}$.
53. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Mathematics-X

54. In the given figure, the line segment $X Y$ is Parallel to $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Prove that $\frac{\mathrm{AX}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}}$

55. Through the vertex D of a parallelogram $A B C D$, a line is drawn to intersect the sides BA and BC produced at E and F respectively. Prove that
$\frac{\mathrm{DA}}{\mathrm{AE}}=\frac{\mathrm{FB}}{\mathrm{BE}}=\frac{\mathrm{FC}}{\mathrm{CD}}$
56. Prove dthat if in a triangle, the square on one side is equal to the sum of the squares on the other two sides, then the angle opposite to the first side is a right angle.

ANSWERS

1. No
2. $x=\frac{a c}{b+c}$
3. $\angle \mathrm{D}=\angle \mathrm{R}$ true, $\angle \mathrm{F}=\angle \mathrm{P}$ false
4. 24 cm
5. 18 cm
6. $1: 3$
7. $13 \mathrm{~cm}^{2}$
8. $2: 3$
9. $x=2$
10. 2.5 cm
11. $65^{\circ}, 45^{\circ}, 45^{\circ}, 70^{\circ}$
12. $x=\frac{a y}{a+b}$
13. $x=\frac{a c}{b+c}$
14. $240 \mathrm{~cm}^{2}$
15. 10 cm
16. 5 cm
17. $5: 7$
18. 2900 km
19. $\mathrm{x}=3$
20. $x=2$
21. 56°
22. 90°
23. $\mathrm{PR}=12 \mathrm{~cm}, \mathrm{QR} 6 \sqrt{3} \mathrm{~cm}$
24. 3 cm
25. $9: 4$
26. 9 m
27. $15 \mathrm{~cm}, 20 \mathrm{~cm}$

Practice-Test

Similar Triangles

MM: 20
Duration : 50 Minutes

1. The lengths of the diagonals of rhombus are 16 cm and 12 cm . find the side of the rhombus.
2. In an equilateral $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$ and $\frac{\mathrm{AD}^{2}}{\mathrm{BC}^{2}}=x$ find the volue of x. 1
3. In $\triangle \mathrm{ABC}$, if $\mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=x+1, \mathrm{DB}=x-1, \mathrm{AE}=x+3$ and $\mathrm{EC}=x$, then find the value of x.
4. In the given figure, can triangle ABC be similar to $\triangle \mathrm{PBC}$? If yes, give reasons.

5. PQR is a right angled triangle, having $\angle \mathrm{Q}=90^{\circ}$, If $\mathrm{QS}=\mathrm{SR}$, Show that $P R^{2}=4 \mathrm{PS}^{2}-3 \mathrm{PQ}^{2}$.
6. In figure, $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}: \mathrm{DB}=5: 4$, find $\frac{\text { Area (} \square \mathrm{DFE} \text {) }}{\text { Area (} \square \mathrm{CFB})}$

7. State and prove pythagoras theorem.
8. In as equilateral $\triangle \mathrm{LMN}$, the side MN is trisectedat O . prove that $\frac{\mathrm{LO}^{2}}{\mathrm{LM}^{2}}=\frac{7}{9}$.
