Chapter-1 (Term-I)

(Number System)

Key Concepts

* Natural numbers are $-1,2,3, \ldots \ldots \ldots \ldots \ldots$. denoted by N.
* Whole numbers are - $0,1,2,3, \ldots \ldots \ldots \ldots .$. denoted by W.
* Integers $-\ldots \ldots . .-3,-2,-1,0,1,2,3, \ldots \ldots \ldots \ldots \ldots$. denoted by Z.
* Rational numbers - All the numbers which can be written in the form $\mathrm{p} / \mathrm{q}, q \neq 0$ are called rational numbers where p and q are integers.
* Irrational numbers - A number s is called irrational, if it cannot be written in the form p / q where p and q are integers and $q \neq 0$.
* The decimal expansion of a rational number is either terminating or non terminating recurring. Thus we say that a number whose decimal expansion is either terminating or non terminating recurring is a rational number.
* The decimal expansion of a irrational number is non terminating non recurring.
* All the rational numbers and irrational numbers taken together.
* Make a collection of real number.
* A real no is either rational or irrational.
* If r is rational and s is irrational then $r+s, r-s, r . s$ are always irrational numbers but r/s may be rational or irrational.
* Every irrational number can be represented on a number line using Pythagoras theorem.
* Rationalization means to remove square root from the denominator.
$\frac{3+\sqrt{5}}{\sqrt{2}}$ to remove we will multiply both numerator $\&$ denominator by $\sqrt{2}$
$\frac{1}{a \pm \sqrt{b}}$ its rationalization factor $a \mp \sqrt{b}$

Section - A

Q. 1 Is zero a rational number? Can you write in the form p / q, where p and q are integer and $q \neq 0$?
Q. 2 Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$?
Q. 3 State whether the following statements are true or false give reasons for your answers.
(i) Every natural no. is whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number.
(iv) Every irrational number is a real number.
(v) Every real number is an irrational number.
(vi) Every point on the number line is of the form \sqrt{m} where m is a natural no's.
Q. 4 Show how $\sqrt{5}$ can be represented on the number line?

Section - B

Q. 5 Find the decimal expansion of $\frac{10}{3}, \frac{7}{8}$ and $\frac{1}{7}$? What kind of decimal expansion each has.
Q. 6 Show that $1.272727=1 . \overline{27}$ can be expressed in the form p / q, where p and q are integers and $q \neq 0$.
Q. 7 Write three numbers whose decimal expressions are non-terminating \& non recurring?
Q. 8 Find three different rational between $3 / 5$ and 4/7.
Q. 9 Classify the following numbers as rational or irrational.
(a) $\sqrt{23}$
(b) $\sqrt{225}$
(c) 0.6796
(d) $1.101001000100001 \ldots$

Section - C

Q. 10 Visualize 3.765 on the number line using successive magnification.
Q. 11 Visualize $4 . \overline{26}$ on the number line upto 4 decimal places.
Q. 12 simplify the following expressions.
(i) $(5+\sqrt{7})(2+\sqrt{5})$
(ii) $(5+\sqrt{5})(5-\sqrt{5})$
(iii) $(\sqrt{3}+\sqrt{7})^{2}$
(iv) $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
Q. 13 Rationalize the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.

Section - D

Q. 1 Represent $\sqrt{9.3}$ on number line.
Q. 2 Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is $\pi=c / d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Q. 3 Simplify
(i) $2^{2 / 3} \cdot 2^{1 / 5}$
(ii) $\left(\frac{1}{3^{7}}\right)^{7}$
(iii) $(16)^{\frac{3}{4}}$
(iv) $7^{1 / 2} 8^{1 / 2}$

Self Evaluation

Q. 1 Write the value of
$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}$
Q. $2\left\{5\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^{3}\right\}^{\frac{1}{4}}$
Q. 3 If $\mathrm{a} \& \mathrm{~b}$ are rational number, find the value of $\mathrm{a} \& \mathrm{~b}$ in each of the following equalities.
(a) $\frac{\sqrt{3}-1}{\sqrt{3}+1}=a+b \sqrt{3}$
(ii) $\frac{3+\sqrt{7}}{3-\sqrt{7}}=a+b \sqrt{7}$
Q. 4 Prove that $\sqrt{2}$ is an irrational number using long division method?

