Polynomials

Key Points

1. Polynomial : If x is a variable, n is a natural number and $a_{0}, a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$. a_{n} are real numbers, then $p(x)=a_{\mathrm{n}} x^{\mathrm{n}}+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+\ldots \ldots \ldots . .+a_{1} x+a_{0},\left(a_{\mathrm{n}} \neq 0\right)$ is called a polynomial in x.
2. Polynomials of degree 1,2 and 3 are called linear, quadratic and cubic polynomials respectively.
3. A quadratic polynomial is an algebraic expression of the form $a x^{2}+b x+c$, where a, b, c are real numbers with $a \neq 0$.
4. Zeroes of a polynomial $p(x)$ are precisely the x - coordinates of the points where the graph of $y=p(x)$ intersects the x-axis, i.e., $x=a$ is a zero of polynomial $p(x)$ if $p(a)=0$
5. A polynomial can have at most the same number of zeroes as the degree of the polynomial.
6. (i) If one zero of a quadratic polynomial $p(x)$ is negative of the other, then coefficient of $x=0$
(ii) If zeroes of a quadratic polynomial $p(x)$ are reciprocal of each other, then co-efficient of $x^{2}=$ constant term.
7. Relationship between zeroes and coefficients of a polynomial

If α And β Are zeroes of $p(x) a x^{2}+b x+c(a \neq 0)$, them
Sum of zeroes $=\alpha+\beta=-\frac{b}{a}$
Product of zeroes $=\alpha \beta=\frac{c}{a}$
8. If α, β are zeroes of a quadratic polynomial $p(x)$, then $p(x)=k\left[x^{2}-\right.$ (sum of zeroes) $x+$ product of zeroes $]$
$\Rightarrow p(x)=k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$; where k is any non-zero real number.
9. Graph of linear polynomial $p(x)=a x+b$ is a straight line.
10. Division Algorithm states that given any polynomials $p(x)$ and $g(x)$, there exist polynomial $q(x)$ and $r(x)$ such that:

$$
p(x)=g(x) \cdot q(x)+r(x) ; g(x) \neq 0,
$$

[where either $r(x)=0$ or degree $r(x)<$ degree $g(x)$]

