Co-ordinate Geometry

Key Points

1. Let XOX^{\prime} and YOY^{\prime} are two mutually perpendicular lines. These lines are called co-ordinate axis. XOX^{\prime} is called x-axis and YOY' is called y-axis.
2. Point of intersection of x-axis and y-axis i.e. O is called the origin whose coordinates are $(0,0)$.
3. x-coordinate of a point is called abscissa \& y-coordinate is called the ordinate.
4. A plane is divided by the axis in four quadrants.
(i) In first quadrant, both x and y coordinates of a point are +ve .
(ii) In second quadrant, x-coordinate is -ve and y-coordinates is +ve .
(iii) In third quadrant, both x and y coordinates of a point are negative.
(iv) In fourth quadrant, x-coordinate is +ve and y-coordinate is -ve .

5. Distance formula

Distance between two points $\mathbf{P}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\mathbf{Q}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ units.
6. Point A, B, and C are collinear if they lie on the same straight line.
7. Midpoint of a line segment joining. the points $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ is given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

8. Section formula

The coordinates of a point which divides the line segment joining the points $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ in the ratio $l: m$ internally are given by $\left(\frac{l x_{2}+m x_{1}}{l+m}, \frac{l y_{2}+m y_{1}}{l+m}\right)$.

Mathematics-X

9. The area of the triangle with vertices $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ and $\left(\boldsymbol{x}_{3}, \boldsymbol{y}_{3}\right)$ is given by $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$ sq. units. If the area of triangle is zero then points are collinear.
10. Centroid of the triangle with vertices $\left(\boldsymbol{x}_{1} ; \boldsymbol{y}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ and $\left(\boldsymbol{x}_{3}, \boldsymbol{y}_{3}\right)$ is given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.

SECTION-A (1 MARK EACH)

1. What is the distance of points $\mathrm{A}(5,-7)$ from y -axis.
2. If the distance between the points $(x, 2)$ and $(3,-6)$ is 10 units, what is the positive value of x.
3. Find the co-ordinates of the midpoint of the line segment joining points $(4,7)$ and $(2,-3)$.
4. Find the co-ordinates of the point where the line $\frac{x}{2}+\frac{y}{3}=5$ intersects y -axis.
5. If A and B are respectively the points $(-6,7)$ and $(-1,-5)$ then find the value of 2AB.
6. A parallel line is drawn from point $P(5,3)$ to y-axis, what is the distance between the line and y-axis.
7. Find the distance between the lines $3 x+6=0$ and $x-7=0$.
8. The midpoint of the line segmrnt AB is $(4,0)$. If the co-ordinates of point A is $(3,-2)$, then find the co-ordinates of point B.
9. What is the ordinate of any point on x-axis?
10. What is the abscissa of any point on y-axis?
11. What is the distance of point $(3,2)$ from x-axis?
12. What is the distance of point $(3,-4)$ from y-axis?
13. What is the distance of point $(3,4)$ from the origin?
14. Find the value of y if the distance between the points $\mathrm{A}(2,-3) \& \mathrm{~B}(10, y)$ is 10 units.
15. Find the co-ordinates of a points on x -axis which is equidistant from the points $(-2,5)$ and $(2,-3)$.

SECTION-B (2 MARKS EACH)

16. For what value of P, the points $(2,1),(p,-1)$ and $(-1,3)$ are collinear?
17. Find the area of $\triangle \mathrm{PQR}$ whose vertices are $\mathrm{P}(-5,7), \mathrm{Q}(-4,-5)$ and $\mathrm{R}(4,5)$.
18. Find the point of trisection of the line segment joining the points $(1,-2)$ and $(-3,4)$.
19. The midpoints of the sides of a triangle are $(3,4),(4,1)$ and $(2,0)$. Find the vertices of the triangle.
20. Find the value of x if the points $\mathrm{A}(4,3)$ and $\mathrm{B}(\mathrm{x}, 5)$ lie on a circle whose centre is $\mathrm{O}(2,3)$.
21. Find the ratio in which x-axis divides the line segment joining the points $(6,4)$ and $(1,-7)$.
22. Show that the points $(-2,3),(8,3)$ and $(6,7)$ are the vertices of a right angle triangle.
23. Find the point on the y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$.
24. Find the ratio in which y-axis divides the line segment joining the points $\mathrm{A}(5,-6)$ and $\mathrm{B}(-1,-4)$.
25. Find the co-ordinates of a centroid of a triangle whose vertices are ($3,-5$), $(-7,4)$ and $(10,-2)$.

SECTION-C (3 MARKS EACH)

26. Show that the points $\mathrm{A}(2,-2), \mathrm{B}(14,10), \mathrm{C}(11,13)$ and $\mathrm{D}(-1,1)$ are the vertices of a rectangle.
27. Show that the points $\mathrm{A}(5,6), \mathrm{B}(1,5), \mathrm{C}(2,1)$ and $\mathrm{D}(6,2)$ are the vertices of a square.
28. The point R divides the line segment $A B$, whose $A(-4,0)$ and $B(0,6)$ are such that. $\mathrm{AR}=\frac{3}{4} \mathrm{AB}$
29. Three consecutive vertices of a parallelogram are $(-2,-1),(1,0)$ and $(4,3)$. Find the coordinates of fourth vertex.
30. If the distance of $\mathrm{P}(x, y)$ from the points $\mathrm{A}(3,6)$ and $\mathrm{B}(-3,4)$ are equal, prov that $3 x+y=5$.
31. Two vertices of a triangle are $(1,2)$ and $(3,5)$. If the centroid of the triangle is at origin, find the co-ordinates of the third vertex.

Mathematics-X

32. If $\mathrm{P}(x, y)$ is any point on the line joining the points $\mathrm{A}(a, 0)$ and $\mathrm{B}(0, b)$ then show that. $\frac{x}{a}+\frac{y}{b}=1$
33. The line segment joining the points $A(2,1)$ and $B(5,-8)$ is trisected at the points P and Q such that P is nearer to A . If P also lies on line give by $2 x-y+$ $k=0$, find the value of k.
34. If $(3,3),(6, y),(x, 7)$ and $(5,6)$ are the vertices of a parallelogram taken in order, find the value of x and y.
35. It the vertices of a triangle are $(1,-3),(4, p)$ and $(-9,7)$ and its area is 15 sq units, find the value of p.

SECTION-D (4 MARK EACH)

36. Find the values of a and b if the points $\mathrm{A}(-2,1), \mathrm{B}(a, b)$ and $\mathrm{C}(4,-1)$ are collinear and $a-b=1$.
37. If a point $\mathrm{A}(0,2)$ is equidistant from the points $\mathrm{B}(3, p)$ and $\mathrm{C}(p, 5)$ then find value of p and the length of $A B$.
38. To solve a riddle a girl is asked to join the three points $\mathrm{A}(7,5), \mathrm{B}(2,3)$ and $\mathrm{C}(6$, $-7)$ with a sketchpen. After joining these points a triangle is obtained by her. What type of triangle is it? What values are depicted in the question?
39. The coordinates of the houses of Mona and Nishi are $(7,3)$ and $(4,-3)$ respectively. The coordinates of their school are $(2,2)$. If they both start for school at the same time in the morning and reaches at the same time, who walks fast? What values are depicted from the question?
40. A teacher asked three students to stand to form a triangle at the points $\mathrm{P}(-1,3)$, Q $(1,-1)$ and $R(5,1)$. Suddenly a fourth boy came and shows his interest in participating the activity. She asked him to stand at point mid way between Q and R . What is his distance from P . What values of the teacher appears when she agreed the fourth boy to participate?
41. Point P divides the line segment joining the points $A(2,1)$ and $B(5,-8)$ such that $\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{1}{3}$. If P lies on the line $2 x-y+k=0$, Find the value of k .

ANSWERS

1. 5
2. $(3,2)$
3. 26
4. 9
5. 0
6. 2 units
7. 5 units
8. $(-2,0)$
9. 53 sq. units
10. $(1,3),(5,5),(3,-3)$
11. $4: 7$
12. $5: 1$
13. $\left(-1, \frac{9}{2}\right)$
14. $(-4,-7)$
15. $x=8, y=4$
16. $a=1, b=0$
17. (a) Right Angled Triangle (b) Sports, Activeness, Critical thinking.
18. (a) Mona, (b) Time bound, Reality
19. 5 Units, interest in Mathematics, Friendship, Cooperation
20. -8

Practice Test

Coordinate Geometry

Time: 50 minutes

M.M: 20

SECTION-A

1. Find the area of triangle whose vertices are $(-2,3),(8,3)$ and $(6,7)$.
2. Find the value of m in which the points $(3,5),(\mathrm{m}, 6)$ and are $\left(\frac{1}{2}, \frac{15}{2}\right)$ collinear.
3. What is the distance between the points $\mathrm{A}(c, 0)$ and $\mathrm{B}(0,-c)$
4. For what value of p, the points $(-3,9),(2, p)$ and $(4,-5)$ are collinear.
5. If the points $\mathrm{A}(8,6)$ and $\mathrm{B}(x, 10)$ lie on the circle whose centre is $(4,6)$ then find the value of x.
6. Show that the points $\mathrm{A}(-3,2), \mathrm{B}(-5,-5), \mathrm{C}(2,-3)$ and $\mathrm{D}(4,4)$ are the vertices of a rhombus.
7. Find the ratio in which the point $(2, y)$ divides the line segment joining the points $\mathrm{A}(-2,2)$ and $\mathrm{B}(3,7)$. Also find the value of y.
8. If the point P divides the line segment joining the points $\mathrm{A}(-2,-2)$ and $\mathrm{B}(2,-4)$ such that $\frac{A P}{A B}=\frac{3}{7}$, then find the coordinate of P .
9. If $\mathrm{A}(-5,7), \mathrm{B}(-4,-5), \mathrm{C}(-1,-6)$ and $\mathrm{D}(4,5)$ are the vertices of a parallelogram taken in order then find the area.
