TOPIC-1 Surface are

Surface areas and Volumes

Cuboid:

Lateral surface area or Area of four walls = 2(l + b)h

Total surface area = 2(lb + bh + hl)

Volume = $l \times b \times h$

Diagonal = $\sqrt{l^2 + b^2 + h^2}$

Here, l = length, b = breadth and h = height

Cube:

Lateral surface area or Area of four walls = $4 \times (edge)^2$

Total surface area = $6 \times (edge)^2$

Volume = $(edge)^3$

Diagonal of a cube = $\sqrt{3}$ × edge.

Right circular cylinder:

Area of base or top face $= \pi r^2$

Area of curved surface or curved surface area = perimeter of the base \times height = $2\pi rh$

Total surface area (including both ends) = $2\pi rh + 2\pi r^2 = 2\pi r(h + r)$

Volume = (Area of the base \times height)= $\pi r^2 h$

Here, r is the radius of base and h is the height.

Right circular hollow cylinder:

Total surface area = (External surface + internal sufrace) + (Area of ends)

 $= (2\pi Rh + 2\pi rh) + 2(\pi R^2 - \pi r^2)$

 $= [2\pi h(R+r) + 2\pi(R^2 - r^2)]$

 $= [2\pi(R+r)(h+R-r)]$

Curved surface area = $(2\pi Rh + 2\pi rh) = 2\pi h(R + r)$

Volume of the material used = (External volume) – (Internal volume)

 $= \pi R^2 h - \pi r^2 h = \pi h (R^2 - r^2)$

Right circular cone :

Slant height,
$$l = \sqrt{h^2 + r^2}$$

Area of curved surface
$$= \pi r l = \pi r \sqrt{h^2 + r^2}$$

Total surface area = Area of curved surface + Area of base

$$= \pi r l + \pi r^2 = \pi r (l + r)$$

Volume =
$$\frac{1}{3} \pi r^2 h$$

Surface area =
$$4\pi r^2$$

Volume =
$$\frac{4}{3}\pi r^3$$

Spherical shell:

Surface area (outer) =
$$4\pi R^2$$

Volume of material
$$=\frac{4}{3}\pi R^3 - \frac{4}{3}\pi r^3$$

$$= \frac{4}{3} \pi (R^3 - r^3)$$

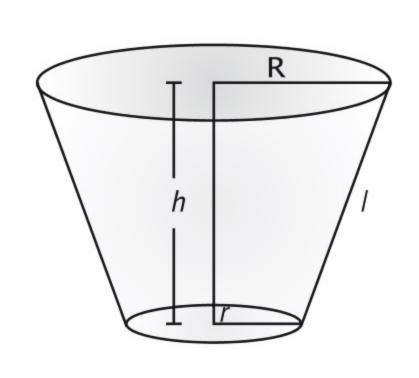
Hemisphere:

Area of curved surface =
$$2\pi r^2$$

$$=2\pi r^2+\pi r^2$$

$$= 3\pi r^2$$

Volume =
$$\frac{2}{3}\pi r^3$$

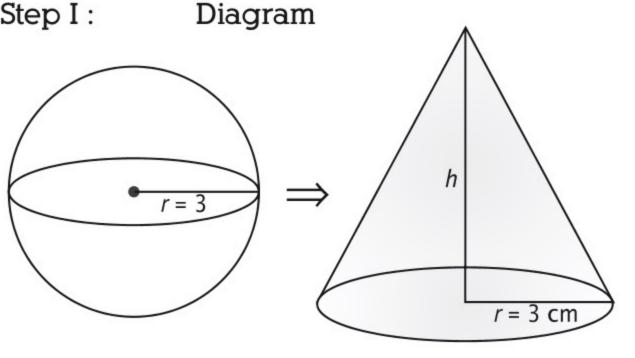

Frustum of a cone:

Total surface area =
$$\pi[R^2 + r^2 + l(R + r)]$$

Volume of the material
$$=\frac{1}{3}\pi h[R^2 + r^2 + Rr]$$

Curved surface area =
$$\pi l(R + r)$$

Where
$$l = \sqrt{h^2 + (R - r)^2}$$


TOPIC-2

Problems involving converting one type of metallic solid into another

A spherical ball of radius 3 cm is melted and recast into a cone of same radius. Calculate the height of cone

Sol. Step I:

Step II: Volume of spherical ball

$$V = \frac{4}{3}\pi(3)^3$$
 cm³

$$V = \frac{1}{3}\pi(3)^2 h$$

Step III: According to question

$$\frac{4}{3}\pi \times 27 = \frac{\pi}{3} \times 9 \times h$$

$$\frac{4\times27}{9} = h$$

$$h = 12 \text{ cm}$$

$$Area \times Rate = Cost$$

Density =
$$\frac{\text{Mass}}{\text{Volume}}$$

$$1 \text{ m}^3 = 1000 \text{ L}$$

$$1 \, \mathrm{m}^3 = 1 \, \mathrm{kL}$$

$$1 L = 1000 \text{ cm}^3$$

$$Speed = \frac{Distance}{Time}$$

$$1 \text{ km/hr} = \frac{5}{18} \text{ m/sec}$$

$$1 \text{ km/hr} = \frac{50}{3} \text{ m/min}$$

$$1 \text{ acre } = 100 \text{ m}^2$$

$$1 \text{ hectare} = 10000 \text{ m}^2$$

$$1 \text{ km} = 1000 \text{ m} = 10^5 \text{ cm}$$

$$1 \text{ km}^2 = 10^6 \text{ m}^2$$

$$1 \text{ m} = 100 \text{ cm}$$

$$1 \text{ m}^2 = 10000 \text{ cm}^2$$