LIST OF FORMULAE IN MATHS FOR CLASS X

CHAPTER-1 REAL NUMBERS (6 Marks)

1. Euclid's division lemma: Given positive integers a and b, there exists unique integers q and r satisfying $a=b q+r, 0 \leq r<b$.
2. Fundamental theorem of Arithmetic: Every composite number can be expressed as a product of primes.
3. In rational number $\frac{p}{q}$, q is always in form of $2^{\mathrm{n}} 5^{\mathrm{m}}$ (for terminating decimal representation).
4. $\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$.

CHAPTER-2 POLYNOMIALS (4 Marks)

5. Zeroes of a polynomial: k is zero of polynomial $P(x)$ if $P(k)=0$.
6. Sum of zeroes $\alpha+\beta=-\frac{b}{a}$, product of zeroes $\alpha \times \beta=\frac{c}{a}$ for polynomial $a x^{2}+b x+c=k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$
7. For cubic polynomial, $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d} \quad \alpha+\beta+\gamma=-\frac{b}{a}, \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}, \alpha \beta \gamma=-\frac{d}{a}$

CHAPTER-3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES (6 Marks)

8. For $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and For $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$, unique solution : $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ graph : two intersecting lines no solution: $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \quad$ parallel lines infinite solution: $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad$ coincident lines
9. Elimination method to solve equations
10. Cross multiplication rule: $\mathrm{a}_{1} \mathrm{X}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{X}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ then $\mathrm{x}=\frac{\left(b_{1} c_{2}-b_{2} c_{1}\right)}{a_{1} b_{2}-a_{2} b_{1}}$ and $\mathrm{y}=\frac{\left(c_{1} a_{2}-c_{2} a_{1}\right)}{a_{1} b_{2}-a_{2} b_{1}}$

CHAPTER-4 QUADRATIC EQUATIONS (6 Marks)

11. $a x^{2}+b x+c=0$ root are real if $D=b^{2}-4 a c \geq 0$ roots are equal if $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=0, \mathrm{x}=\frac{-b \pm \sqrt{D}}{2 a}$

CHAPTER-5 ARITHMETIC PROGRESSIONS (4 Marks)

12. General term of the A.P. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \quad$ where $\mathrm{a}=$ first term, $\mathrm{d}=$ common difference
13. Sum of n terms of an A.P. $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}[a+l]$
14. Sequence of A.P. is : $a, a+d, a+2 d, \ldots$.

CHAPTER-6 SIMILAR TRIANGLES (6 Marks)

15. Similarity rules of two triangles: (i) SSS (ii) SAS (iii) AA
16. Theorem: (i)The ratio of the areas of two similar triangles is equal to the squares of the ratio of their corresponding sides.
17. (ii) [BPT] If a line is drawn parallel to one side of a triangle, it cuts other two sides in the same ratio.
18. (iii) Pythagoras theorem: In right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
(iv) Converse of Pythagoras theorem : In a triangle, if square of one side is equal to the sum of the squares of the other two sides , then the angle opposite the first side is a right angle

CHAPTER-7 COORDINATE GEOMETRY (6 Marks)

19. The distance between $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
20. The distance of point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the origin is $\sqrt{x^{2}+y^{2}}$
21. The coordinates of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which divides the line segment joining the points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ are $\left(\frac{m_{1} x_{2+} m_{2} x_{1}}{m_{1}+m_{2}}+\frac{m_{1} y_{2+} m_{2} y_{1}}{m_{1}+m_{2}}\right)$.
22. The mid-point of the line segment joining the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1+} x_{2}}{2}+\frac{y_{1+} y_{2}}{2}\right)$.
23. The area of the triangle formed by the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is the numerical value of the expression $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

CHAPTER-8 INTRODUCTION TO TRIGONOMETRY (8 Marks)

	$\mathbf{0}^{\mathbf{o}}$	$\mathbf{3 0}^{\mathbf{o}}$	$\mathbf{4 5}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\operatorname{Sin} \mathrm{A}$	$\mathbf{0}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\mathbf{1}$
$\operatorname{Cos} \mathrm{~A}$	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\mathbf{0}$

24. $\sin \mathrm{A}=\frac{P}{H}, \cos \mathrm{~A}=\frac{B}{H^{\prime}}, \tan \mathrm{A}=\frac{P}{B^{\prime}}, \cot \mathrm{A}=\frac{1}{\tan A^{\prime}}, \sec \mathrm{A}=\frac{1}{\cos A^{\prime}}, \operatorname{cosec} \mathrm{A}=\frac{1}{\sin A}$
25. $\sin \left(90^{\circ}-A\right)=\cos A, \cos \left(90^{\circ}-A\right)=\sin A, \tan \left(90^{\circ}-A\right)=\cot A, \cot \left(90^{\circ}-A\right)=\tan A, \sec \left(90^{\circ}-A\right)=$ $\operatorname{cosec} A, \operatorname{cosec}\left(90^{\circ}-A\right)=\sec A$,
26. $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1, \quad \sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1$ for $00^{\circ} \leq \mathrm{A} \leq 90^{\circ}, \quad \operatorname{cosec}^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A}$ for $0^{\circ}<\mathrm{A} \leq 90^{\circ}$.

CHAPTER- 9 SOME APPLICATION OF TRIGONOMETRY (4 Marks)

27. Angle of Elevation: When the object is above the eye then the angle of elevation of an object as seen by an observer is the angle between the horizontal and the line from the object to the observer's eye (the line of sight).
28. Angle of Depression: When the object is below the eye then angle between the horizontal and the observer's line of sight is called the angle of depression.

CHAPTER-10 CIRCLES (5 Marks)

29. Theorems (i) The tangent at any point of a circle is perpendicular to the radius through the point of contact. (ii) The length of tangents drawn from an external point to a circle are equal.

CHAPTER-11 CONSTRUCTIONS of similar triangles and construction of Tangents to a circle. (4 Marks)
CHAPTER-12 AREA RELATED TO CIRCLE (4 Marks)
(i) Area of the sector $=\frac{\theta}{360^{\circ}} \pi r^{2}$
(ii) length of arc $=\frac{\theta}{360^{\circ}} 2 \pi r$
(iii) Area of minor segment $=\frac{\theta}{360^{\circ}} \pi r^{2}-\frac{1}{2} r^{2} \sin \theta$.

CHAPTER-13 SUREFACE AREAS AND VOLUME (6 Marks)

Object	CSA	TSA	Volume
Cube	$4 \mathbf{a}^{2}$	6a ${ }^{2}$	a^{3}
Cuboid	2h(l+b)	$\mathbf{2 (l b ~ + b h ~ + ~ h l) ~}$	lbh
Cylinder	$2 \pi r h$	$2 \pi r h+2 \pi r^{2}$	$\pi r^{2} h$

Cone	$\pi r l$	$\pi r l+\pi r^{2}$	$\frac{1}{3} \pi r^{2} h$
Sphere	-	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$
Hemisphere	$2 \pi r^{2}$	$3 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$

(i) Volume of a frustum of cone $=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$.
(ii) Curved surface area of a frustum of cone $=\pi l\left(r_{1}+r_{2}\right)$ where $\mathrm{l}=\sqrt{\mathrm{h}^{2}+\left(r_{1}-r_{2}\right)^{2}}$.
(iii) Total surface area of frustum of cone $=\pi l\left(r_{1}+r_{2}\right)+\pi\left(r_{1}^{2}+r_{2}^{2}\right)$

CHAPTER-14 STATISTICS (7 Marks)

A. Mean
(i) The direct method: $\overline{\mathrm{x}}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$ (iii)The assumed mean method: $\overline{\mathrm{x}}=\mathrm{a}+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$
(ii) The step deviation method: $\overline{\mathrm{x}}=\mathrm{a}+\left(\frac{\sum f_{i} u_{i}}{\Sigma f_{i}}\right) \times \mathrm{h}$
B. \quad Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \mathrm{h}$

Where $\mathrm{l}=$ lower limit of the modal class,
$\mathrm{h}=$ size of the class interval(assuming all class sizes to be equal).
f_{1} =frequency of the modal class,
$f_{2=}$ frequency of the class succeding the modal class,
$f_{0}=$ frequency of the class proceding the modal class.
C. Median $=1+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$\mathrm{l}=$ lower limit of median class,
$\mathrm{n}=$ number of observations,
$\mathrm{cf}=$ cumulative frequency of class preceding the median class,
$\mathrm{f}=\mathrm{frequency} \mathrm{of} \mathrm{median} \mathrm{class}$,
$\mathrm{~h}=$ class size(assuming class size to be equal).

* Mode = 3Median - 2Mean

* More than ogive : plot points (lower limit, corresponding cumulative frequency)
* Less than ogive : plot points (upper limit , corresponding cumulative frequency)

CHAPTER-15 PROBABILITY (4 Marks)

$$
\mathrm{P}(\mathrm{E})=\frac{\text { Number of outcomes favourable to } \mathrm{E}}{\text { Number of all possible outcomes of experiment }}
$$

Sum of probabilities of all events is always 1 in an experiment, $0 \leq P(E) \leq 1, \mathrm{P}(\mathrm{E})+\mathrm{P}($ Not E$)=1$

