LIST OF FORMULAE IN MATHS FOR CLASS X

CHAPTER-1 REAL NUMBERS (6 Marks)

- 1. Euclid's division lemma: Given positive integers a and b, there exists unique integers q and r satisfying a = bq + r, $0 \le r \le b$.
- 2. Fundamental theorem of Arithmetic: Every composite number can be expressed as a product of primes.
- 3. In rational number $\frac{p}{q}$, q is always in form of $2^{n}5^{m}$ (for terminating decimal representation).
- 4. HCF(a,b) x LCM (a,b) = a x b.

CHAPTER-2 POLYNOMIALS (4 Marks)

- 5. Zeroes of a polynomial: k is zero of polynomial P(x) if P(k) = 0.
- 6. Sum of zeroes $\alpha + \beta = -\frac{b}{a}$, product of zeroes $\alpha \times \beta = \frac{c}{a}$ for polynomial $ax^{2} + bx + c = k[x^{2} (\alpha + \beta)x + \alpha\beta]$

7. For cubic polynomial, $ax^3 + bx^2 + cx + d$ $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a}$

CHAPTER-3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES (6 Marks)

- 8. For $a_1 x + b_1 y + c_1 = 0$ and For $a_2 x + b_2 y + c_2 = 0$, unique solution : $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ graph : two intersecting lines no solution: $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ parallel lines infinite solution: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ coincident lines
- 9. Elimination method to solve equations

10. Cross multiplication rule: $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ then $x=\frac{(b_1c_2-b_2c_1)}{a_1b_2-a_2b_1}$ and \dots

$$y = \frac{(c_1 a_2 - c_2 a_1)}{a_1 b_2 - a_2 b_1}$$

CHAPTER-4 QUADRATIC EQUATIONS (6 Marks)

11. $ax^2+bx+c=0$ root are real if $D = b^2 - 4ac \ge 0$ roots are equal if $D = b^2 - 4ac = 0, x = \frac{-b \pm \sqrt{D}}{2a}$

CHAPTER-5 ARITHMETIC PROGRESSIONS (4 Marks)

- 12. General term of the A.P. $a_n = a + (n-1)d$ where a=first term , d = common difference 13. Sum of n terms of an A.P. $S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}[a + l]$
- 14. Sequence of A.P. is : a , a+d , a+2d ,

CHAPTER-6 SIMILAR TRIANGLES (6 Marks)

- 15. Similarity rules of two triangles: (i) SSS (ii) SAS (iii) AA
- 16. Theorem: (i)The ratio of the areas of two similar triangles is equal to the squares of the ratio of their corresponding sides.
- 17. (ii) [BPT] If a line is drawn parallel to one side of a triangle, it cuts other two sides in the same ratio.
- 18. (iii) Pythagoras theorem: In right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

(iv) Converse of Pythagoras theorem : In a triangle , if square of one side is equal to the sum of the squares of the other two sides , then the angle opposite the first side is a right angle

CHAPTER-7 COORDINATE GEOMETRY (6 Marks)

- 19. The distance between P(x₁,y₁) and Q(x₂,y₂) is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- 20. The distance of point P(x,y) from the origin is $\sqrt{x^2 + y^2}$
- 21. The coordinates of the point P(x,y) which divides the line segment joining the points A(x₁,y₁) and B(x₂,y₂) internally in the ratio $m_1:m_2$ are $\left(\frac{m_1x_{2+}m_2x_1}{m_1+m_2} + \frac{m_1y_{2+}m_2y_1}{m_1+m_2}\right)$.
- 22. The mid-point of the line segment joining the points P(x₁,y₁) and Q(x₂,y₂) is $\left(\frac{x_{1+}x_{2}}{2} + \frac{y_{1+}y_{2}}{2}\right)$.
- 23. The area of the triangle formed by the points (x_1,y_1) , (x_2,y_2) and (x_3,y_3) is the numerical value of the expression $\frac{1}{2}[x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)]$

CHAPTER-8 INTRODUCTION TO TRIGONOMETRY (8 Marks)

	00	300	45 ⁰	60 ⁰	90 0
Sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
24 Sin $A = {P \over P}$ Cos $A = {B \over P}$ top $A = {P \over P}$ set $A = {1 \over 1}$ set $A = {1 \over 1}$ set $A = {1 \over 1}$					

- 24. Sin A = $\frac{P}{H}$, Cos A= $\frac{B}{H}$, tan A= $\frac{P}{B}$, cot A= $\frac{1}{\tan A}$, sec A= $\frac{1}{\cos A}$, cosec A= $\frac{1}{\sin A}$
- 25. Sin(90°-A)= cos A, cos(90°-A)= sin A, tan(90°-A)= cot A, cot(90°-A)= tan A, sec(90°-A)= cosec A, cosec(90°-A)= sec A,

26. $\sin^2 A + \cos^2 A = 1$, $\sec^2 A - \tan^2 A = 1$ for $0^\circ \le A \le 90^\circ$, $\csc^2 A = 1 + \cot^2 A$ for $0^\circ < A \le 90^\circ$.

CHAPTER- 9 SOME APPLICATION OF TRIGONOMETRY (4 Marks)

- 27. **Angle of Elevation:** When the object is above the eye then the **angle of elevation** of an object as seen by an observer is the angle between the horizontal and the line from the object to the observer's eye (the line of sight).
- 28. **Angle of Depression:** When the object is below the eye then angle between the horizontal and the observer's line of sight is called the **angle of depression**.

CHAPTER-10 CIRCLES (5 Marks)

29. Theorems (i) The tangent at any point of a circle is perpendicular to the radius through the point of contact. (ii) The length of tangents drawn from an external point to a circle are equal.

CHAPTER-11 CONSTRUCTIONS of similar triangles and construction of Tangents to a circle. (4 Marks)

CHAPTER-12 AREA RELATED TO CIRCLE (4 Marks)

(i) Area of the sector = $\frac{\theta}{360^{\circ}}\pi r^2$

(ii) length of arc = $\frac{\theta}{360^{\circ}} 2\pi r$ (iii) Area of minor segment = $\frac{\theta}{360^{\circ}} \pi r^2 - \frac{1}{2}r^2 \sin\theta$.

CHAPTER-13 SUREFACE AREAS AND VOLUME (6 Marks)

Object	CSA	TSA	Volume
Cube	4a ²	6a ²	a ³
Cuboid	2h(l+b)	2(lb +bh + hl)	lbh
Cylinder	2πrh	$2\pi rh + 2\pi r^2$	$\pi r^2 h$

Cone	πrl	$\pi r l + \pi r^2$	$\frac{1}{3}\pi r^2h$
Sphere	-	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

Volume of a frustum of cone= $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$. (i)

Curved surface area of a frustum of cone= $\pi l(r_1 + r_2)$ where l= $\sqrt{h^2 + (r_1 - r_2)^2}$. (ii)

Total surface area of frustum of cone= $\pi l(r_1 + r_2) + \pi (r_1^2 + r_2^2)$ (iii)

CHAPTER-14 STATISTICS (7 Marks)

A. Mean

The direct method: $\mathbf{x} = \frac{\sum f_i x_i}{\sum f_i}$ (iii) The assumed mean method: $\mathbf{x} = a + \frac{\sum f_i d_i}{\sum f_i}$ The step deviation method: $\mathbf{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$ (i)

(ii)

B. Mode =l+
$$\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

Where l= lower limit of the modal class,

h= size of the class interval(assuming all class sizes to be equal).

 f_1 =frequency of the modal class,

 $f_{2=}$ frequency of the class succeding the modal class,

 $f_0 = frequency of the class proceeding the modal class.$

C. Median=l+
$$\left(\frac{\frac{n}{2}-cf}{f}\right) \times h$$

l=lower limit of median class, n= number of observations, cf= cumulative frequency of class preceding the median class, f= frequency of median class, h= class size(assuming class size to be equal).

* Mode = 3Median - 2Mean

* More than ogive : plot points (lower limit , corresponding cumulative frequency)

* Less than ogive : plot points (upper limit , corresponding cumulative frequency)

CHAPTER-15 PROBABILITY (4 Marks)

 $P(E) = \frac{Number of outcomes favourable to E}{Number of all possible outcomes of experiment}$

Sum of probabilities of all events is always 1 in an experiment, $0 \le P(E) \le 1$, P (E) + P (Not E) = 1