CHAPTER 2 : Polynomials

Fundamentals:

An algebraic equation of the form $p(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_{n-1}x + a_n$ is called a polynomial, provided it has no negative exponent for any variable, where a_0 , a_1 , a_2 , ... a_{n-1} , a_n are constants (real numbers);

 $a_0 \neq 0$, *n* is called the degree of the polynomial. (highest power of variable *x*)

- **Monomial :** Polynomial with one term (*ax*, *by* etc.)
- **Binomial :** Polynomial with two terms (ax + by, $ax + bx^2$ etc.)
- **Trinomial**: Polynomial with three terms $(ax + by + cz, ax + bx^2 + cx^3)$ etc.) where $a, b, c \ne 0$.

Degree of a Polynomial:

Degree of a Polynomial: If 1 then polynomial is called **linear polynomial**.

General form : ax + b ($a \ne 0$)

If 2 then polynomial is called quadratic polynomial.

General form: $ax^2 + bx + c \ (a \ne 0)$

If 3 then polynomial is called **cubic polynomial**.

General form: $ax^3 + bx^2 + cx + d$ ($a \ne 0$)

Zeroes of a Polynomial:

Zeroes of a Polynomial : For polynomial p(x), the value of x for which p(x) = 0, is called zero(es) of the polynomial, also known as root of the polynomial.

Linear Equations have 1 root.

Quadratic Equations have 2 roots.

Cubic Equations have 3 roots.

Remainder Theorem:

Division Algorithm For Polynomials: If p(x) and g(x) are two polynomials with $g(x) \neq 0$, then we can find q(x) and r(x) such that

$$p(x) = g(x) \times q(x) + r(x)$$
, where, $r(x) = 0$ (or) deg $r(x) < \deg g(x)$

 $Dividend = Divisor \times Quotient + Remainder$

Factor Theorem: If p(x) is a polynomial of degree ≥ 1 and a is any real number, then

- (i) (x a) is a factor of p(x), if p(a) = 0
- (ii) p(a) = 0, if (x a) is a factor of p(x).

Algebraic Identities:

(i)
$$(x + y)^2 = x^2 + 2xy + y^2$$

(ii)
$$(x-y)^2 = x^2 - 2xy + y^2$$

(iii)
$$x^2 - y^2 = (x + y)(x - y)$$

(iv)
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

(v)
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$
 (vi) $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$

vi)
$$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$$

(vii)
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

(viii)
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

(ix) If
$$x + y + z = 0$$
, then $x^3 + y^3 + z^3 = 3xyz$ (x) $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

(xi)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2).$$

Tips:

- 1. Graph of linear equation is a straight line, while graph of quadratic equation is a parabola.
- 2. Degree of polynomial = Number of zeroes of polynomial.
- 3. If remainder r(x) = 0, then g(x) is a factor of p(x).
- 4. (x + a) is a factor of polynomial p(x), if p(-a) = 0.
- 5. (x a) is a factor of polynomial p(x), if p(a) = 0.
- 6. (x-a)(x-b) is a factor of polynomial p(x), if p(a) = 0 and p(b) = 0
- 7. (ax + b) is a factor of polynomial p(x), if $p\left(\frac{-b}{a}\right) = 0$
- 8. (ax b) is a factor of polynomial p(xz), if $p\left(\frac{b}{a}\right) = 0$