Polynomials

Key Points

1. Polynomial: If x is a variable, n is a natural number and $a_{0}, a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$. a_{n} are real numbers, then $p(x)=a_{\mathrm{n}} x^{\mathrm{n}}+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+\ldots \ldots \ldots .+a_{1} x+a_{0},\left(a_{\mathrm{n}} \neq 0\right)$ is called a polynomial in x.
2. Polynomials of degree 1,2 and 3 are called linear, quadratic and cubic polynomials respectively.
3. A quadratic polynomial is an algebraic expression of the form $a x^{2}+b x+c$, where a, b, c are real numbers with $a \neq 0$.
4. Zeroes of a polynomial $p(x)$ are precisely the x - coordinates of the points where the graph of $y=p(x)$ intersects the x-axis, i.e., $x=a$ is a zero of polynomial $p(x)$ if $p(a)=0$
5. A polynomial can have at most the same number of zeroes as the degree of the polynomial.
6. (i) If one zero of a quadratic polynomial $p(x)$ is negative of the other, then coefficient of $x=0$
(ii) If zeroes of a quadratic polynomial $p(x)$ are reciprocal of each other, then co-efficient of $x^{2}=$ constant term.
7. Relationship between zeroes and coefficients of a polynomial

If α And β Are zeroes of $p(x) a x^{2}+b x+c(a \neq 0)$, them
Sum of zeroes $=\alpha+\beta=-\frac{b}{a}$
Product of zeroes $=\alpha \beta=\frac{c}{a}$
8. If α, β are zeroes of a quadratic polynomial $p(x)$, then $p(x)=k\left[x^{2}-\right.$ (sum of zeroes) $x+$ product of zeroes $]$
$\Rightarrow p(x)=k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right]$; where k is any non-zero real number.
9. Graph of linear polynomial $p(x)=a x+b$ is a straight line.
10. Division Algorithm states that given any polynomials $p(x)$ and $g(x)$, there exist polynomial $q(x)$ and $r(x)$ such that:

Mathematics-X

$$
p(x)=g(x) \cdot q(x)+r(x) ; g(x) \neq 0
$$

[where either $r(x)=0$ or degree $r(x)<$ degree $g(x)$]

VERY SHORT ANSWER TYPE QUESTIONS

1. What will be the number of zeroes of a linear polynomial $p(x)$ if its graph (i) passes through the origin. (ii) doesn't intersect or touch x-axis at any point?
2. Find the quadratic polynomial whose zeroes are
$(5+2 \sqrt{3})$ and $(5-2 \sqrt{3})$
3. If one zero of $p(x)=4 x^{2}-\left(8 k^{2}-40 k\right) x-9$ is negative of the other, find values of k.
4. What number should be added to the polynomial $x^{2}-5 x+4$, so that 3 is a zero of polynomial so obtained.
5. How many (i) maximum (ii) minimum number of zeroes can a quadratic polynomial have?
6. What will be the number of real zeroes of the polynomial $x^{2}+1$?
7. If α and β are zeroes of polynomial $6 x^{2}-7 x-3$, then form a quadratic polynomial where zeroes are 2α and 2β
8. If α and $\frac{1}{\alpha}$ are zeroes of $4 x^{2}-17 x+k-4$, find value of k.
9. What will be the number of zeroes of the polynomials whose graphs are parallel to (i) y-axis (ii) x-axis
10. What will be number of zeroes of the polynomials whose graphs are either touching or intersecting the axis only at the points:
(i) $(-3,0),(0,2) \&(3,0)(i i)(0,4),(0,0)$ and $(0,-4)$

SHORT ANSWER TYPE (I) QUESTIONS

11. If -3 is one of the zeroes of the polynomial $(k-1) x^{2}+k x+1$, find the value of k.
12. If the product of zeroes of $a x^{2}-6 x-6$ is 4 , find the value of a. Hence find the sum of its zeroes.
13. If α and β are zeroes of the polynomial $x^{2}-a(x+1)-b$ such that $(\alpha+1)$ $(\beta+1)=0$, find the value of b.
14. If zeroes of $x^{2}-k x+6$ are in the ratio $3: 2$, find k.
15. If one zero of the quadratic polynomial $\left(k^{2}+k\right) x^{2}+68 x+6 k$ is reciprocal of the other, find k.
16. If α and β are the zeroes of the polynomial $x^{2}-5 x+m$ such that $\alpha-\beta=1$, find m.
17. If the sum of squares of zeroes of the polynomial $x^{2}-8 x+k$ is 40 , find the value of k.
18. If α and β are zeroes of the polynomial $t^{2}-t-4$, form a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

SHORT ANSWER TYPE (II) QUESTIONS

19. If $(k+y)$ is a factor of each of the polynomials $y^{2}+2 y-15$ and $y^{3}+a$, find values of k and a.
20. Obtain zeroes of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify relation between its zeroes and coefficients.
21. If $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by $\left(x^{2}+5\right)$, remainder comes out to be $(p x+q)$, find values of q and q.
22. -5 is one of the zeroes of $2 x^{2}+p x-15$, zeroes of $p\left(x^{2}+x\right)+k$ are equal to each other. Find the value of k.
23. Find the value of k such that $3 x^{2}+2 k x+x-k-5$ has the sum of zeroes as half of their product.
24. If α and β are zeroes of $y^{2}+5 y+m$, find the value of m such that $(\alpha+\beta)^{2}-\alpha \beta$ $=24$
25. If α and β are zeroes of $x^{2}-x-2$, find a polynomial whose zeroes are $(2 \alpha+1)$ and $(2 \beta+1)$
26. Find values of a and b so that $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$.
27. What must be subtracted from $8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$?
28. What must be added to $4 x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is divisible by $x^{2}-2 x-3$?

Mathematics-X

LONG ANSWER TYPE QUESTIONS

29. Find all zeroes of the polynomial $2 x^{3}+x^{2}-6 x-3$ if two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
30. If $\sqrt{2}$ is a zero of $\left(6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2}\right)$, find its other zeroes.
31. If two zeroes of $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $(2 \pm \sqrt{3})$, find other zeroes.
32. On dividing the polynomial $x^{3}-5 x^{2}+6 x-4$ by a polynomial $g(x)$, quotient and remainder are $(x-3)$ and $(-3 x+5)$ respectively. Find $g(x)$
33. If sum and product of two zeroes of the polynomial $x^{3}+x^{2}-3 x-3$ are 0 and 3 respectively, find all zeroes of the polynomial.
34. If $-\frac{1}{2}$ is a zero of the polynomial $2 x^{3}+x^{2}-6 x-3$, find the sum and product of its other two zeroes.
35. Obtain all zeroes of the polynomial $2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ if two factors of this polynomial are $\left(x \pm \sqrt{\frac{3}{2}}\right)$.
36. Sum and product of two zeroes of $x^{4}-4 x^{3}-8 x^{2}+36 x-9$ are 0 and -9 respectively. Find the sum and product of its other two zeroes.
37. A person distributes k books to some needy students. If k is a zero of the polynomial $x^{2}-100 x-20000$, then
(i) Find the number of books distributed
(ii) Which moral values depicted by the person impressed you?
38. One zero of $x^{3}-12 x^{2}+47 x-60$ is 3 and the remaining two zeroes are the number of trees planted by two students.
(i) Find the total number of trees planted by both students.
(ii) Which moral value of the students is depicted here?

ANSWERS

1. (i) 1 (ii) 0
2. $k=0,5$
3. (i) 2 (ii) 0
4. $3 x^{2}-7 x-6$
5. (i) 1 (ii) 0
6. $\frac{4}{3}$
7. 1
8. 5
9. 12
10. $k=3,-5$ and $a=27,-125$
11. $p=2, q=3$
12. 1
13. $x^{2}-4 x-5$
14. $14 x-10$
15. $\sqrt{3},-\sqrt{3},-\frac{1}{2}$
16. $-5,7$
17. $\sqrt{3},-\sqrt{3},-1$
18. $2,-1, \pm \sqrt{\frac{3}{2}}$
19. (i) 200 (ii) Love \& care, humanity,
20. (i) 9 (ii) Love for environment, \qquad ., eco-friendly, etc.

Mathematics-X

