Chapter - 10

(Circle)

Key Concept

* Circle - circle is locus of such points which are at equidistant from a fixed point in a plane.
* Concentric circle - Circle having same centre called concentric circle.
* Two arc of a circle called congruent if they have the same degree measure.
* If two arc equal then their corresponding chords are equal.
* The perpendicular from centre to chord of circle, it bisects the chord and converse.
* There is one and only one circle passing through three non-collinear points.
* Equal chords of circle are equidistant from centre.
* The angle subtend by an arc at the centre of circle is twice the angle which subtend at remaining part of circumference.
* Any two angles in the same segment of the circle are equal.
* Angle of semicircle is right angle.
* Equal chords of circle subtend equals angle at the centre of circle.
* If the all vertices of a quadrilateral lie on the circumference of circle then quadrilateral called cyclic.
* In a cycle quadrilateral the sum of opposite angles is 180° and converse.
* The exterior angle of a cycle quadrilateral is equal to the opposite interior angle.

Section - A

Q. $1 \quad A D$ is diameter of a circle and $A B$ is a chord If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$. The distance of $A B$ from centre of circle is.
(a) 17 cm
(b) 15 cm
(c) 4 cm
(d) 8 cm
Q. 2 In given figure, O is centre of circle if $\angle A B C=20^{\circ}$ then $\angle A O C$ is equal to:

(a) 20°
(b) 40°
(c) 60°
(d) 10^{0}
Q. 3 Given three collinear points then the number of circles which can be drawn through these three points are.
(a) one
(b) two
(c) infinite
(d) none
Q. 4 Given two concentric circles with centre O. A line cut the circle at A, B, C and D respectively if $A B=10 \mathrm{~cm}$ then length of $C D$.

(a) 5 cm
(b) 10 cm
(c) 3.5 cm
(d) 7.5 cm
Q. 5 In given figure value of y is

(a) 35^{0}
(b) 45^{0}
(c) 70°
(d) 140°
Q. 6 In the given figure, $\angle D B C=55^{\circ}, \angle B A C=45^{\circ}$ then $\angle B C D$ is

(a) 45^{0}
(b) 55^{0}
(c) 100°
(d) 80°

Section - B

Q. 7 In the given figure, $\angle C A B$ is $\ldots \ldots \ldots \ldots \ldots \ldots$................... $\angle A O B=90^{\circ}, \angle C B A=30^{\circ}$

Q. 8 If 0 is centre of circle as shown in the figure, $\angle C B D$.

Q. 9 In the given figure, 0 is the center of the circle with radius $5 \mathrm{~cm} . O P \perp C D$, $O Q \perp A B$
$A B \| C D, A B=6 \mathrm{~cm}$ and $\mathrm{CD}=8 \mathrm{~cm}$ determine PQ .

Q. 10 Prove that the circle drawn on any equal side of an isosceles triangle as diameter, bisects the base.
Q. 11 Prove that cyclic parallelogram is always a rectangle.

Section - C

Q. 12 In the given figure $A D$ is diameter of the circle, whose centre is O and $A B \| C D$, Prove that $A B=C D$

Q. 13 In the given figure determine a, b and c .

Q. $14 A B$ is a diameter of circle $C(O, r)$. Chord $C D$ is equal to radius $O D$. $A C$ and $B D$ produced interest at P . Prove that $\angle A P B=60^{\circ}$

Q. 15 If two non parallel side of a trapezium are equal, prove that it is cyclic.
Q. 16 ABC is a right angle triangle, right angled at A. A circle is inscribed in it. The length of two sides containing angle A is 12 cm and 5 cm find the radius.

Section - D

Q. 17 A circle has radius $\sqrt{2} \mathrm{~cm}$. It is divided into two segments by a chord of length 2 cm . Prove that the angle subtended by the chord at a point in major segment is 45°.
Q. 18 Two circles interest each other at points A and B. AP and AQ are diameters of the two circles respectively. If $\angle A P B=40^{\circ}$ and $\angle A Q B=70^{\circ}$, find $\angle P A B$ and $\angle Q A B$
Q. 19 ABCD is a parallelogram. The circle through A, B and C intersects $C D$ produced at E. If $A B=10 \mathrm{~cm}, B C=8 \mathrm{~cm}, C E=14 \mathrm{~cm}$. Find $A E$.
Q. 20 Prove the sum of either pair of opposite angles of a cycle quadrilateral is 180°.
Q. 21 In the given figure, B and E are points on line segment $A C$ and $D F$ respectively show that $A D \| C F$.

Self evaluation

Q. 22 In the given figure, $O A$ and $O B$ are respectively perpendiculars to chords $C D$ and $E F$ of a circle whose centre is O. If $O A=O B$, prove that $\widehat{E C}=\widehat{D F}$

Q. 23 In the given figure $\angle B A C=55^{\circ}, \angle B C A=62^{\circ}$, the altitude BE produced meets the circle at D, determine $\angle A C D, \angle D A C$ and $\angle A D B$

Q. 24 In the given figure, O is centre of circle of radius $5 \mathrm{~cm} . O P \perp C D, A B \| C D$, $A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Determine PQ

Q. 25 In the given figure. O is the centre of circle, $\angle B C O=30^{\circ} \angle A E B=90^{\circ}$ and $O D|\mid B C$ find x and y.

Q. $26 O$ is circumcentre of the triangle $A B C$ and D is the mid-point of the base $B C$.

Prove that $\angle B O D=\angle A$

Answers:

1. (d)
2. (b) 40°
3. (d) None
4. (b)
5. (a) 35°
6. (d) 80°
7. 105^{0}
8. 55^{0}
9. 7 cm .
10. $a=105, b=13, c=62$
11. 2 cm .
12. $50^{\circ}, 20^{\circ}$
13. 8 cm .
14. $35^{0}, 28^{0}, 62^{0}$
15. 1 cm
16. $30^{0}, 15^{0}$
