Chapter-13

(Surface areas and Volumes)

Key Concepts

SN.	Name	Figure	Lateral/curved surface area	$\begin{array}{\|l} \hline \text { Total surface } \\ \text { area TSA } \\ \hline \end{array}$	Volume (V)	Symbols use for
1	Cuboid		$2(l+b) \times h$	$2(l b+b h+h l)$	$l b h$	$\begin{aligned} & l=\text { length } \\ & b=\text { breadth } \\ & h=\text { height } \end{aligned}$
2.	Cube		$4 s^{2}$	$6 s^{2}$	s^{3}	$\mathrm{s}=$ side
3.	Right circular cylinder		$2 \pi r h$	$2 \pi r(h+r)$	$\pi r^{2} h$	$\begin{aligned} & \mathrm{h}=\text { height } \\ & \mathrm{r}=\text { radius of } \\ & \text { base } \end{aligned}$
4.	Right circular cone		$\pi r l$	$\pi r(l+r)$	$\frac{1}{3} \pi r^{2} h$	$\begin{aligned} & r=\text { radius of } \\ & \text { base } \\ & h=\text { height } \\ & \text { l }=\text { slant } \\ & \text { height } \end{aligned}$
5.	Sphere		$4 \pi r^{2}$	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$	$r=O A=$ radius
6.	Hemi sphere Solid		$2 \pi r^{2}$	$3 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$	$r=O A=$ radius
7.	Hemi sphere hollow		$2 \pi r^{2}$	$2 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$	$r=O A=$ radius

Section - A

Q. 1 If surface areas of two spheres are in the ratio of $4: 9$ then the ratio of their volumes is
(a) $\frac{16}{27}$
(b) $\frac{4}{27}$
(c) $\frac{8}{27}$
(d) $\frac{9}{27}$
Q. 2 The surface area of a cube whose edge is 11 cm is
(a) $725 \mathrm{~cm}^{2}$
(b) $726 \mathrm{~cm}^{2}$
(c) $727 \mathrm{~cm}^{2}$
(d) $728 \mathrm{~cm}^{2}$
Q. 3 A match box measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes?
(a) $15 \mathrm{~cm}^{3}$
(b) $180 \mathrm{~cm}^{3}$
(c) $90 \mathrm{~cm}^{3}$
(d) $175 \mathrm{~cm}^{3}$
Q. 4 The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the base of the cylinder.
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
Q. 5 The total surface area of a cone of radius $\frac{r}{2}$ and length $2 l$ is
(a) $2 \pi r(l+r)$
(b) $\pi r(l+r)$
(c) $\pi r\left(l+\frac{r}{4}\right)$
(d) $\pi r\left(l+\frac{r}{2}\right)$
Q. 6 The surface area of sphere of radius 10.5 cm is
(a) $1386 \mathrm{~cm}^{2}$
(b) $616 \mathrm{~cm}^{2}$
(c) $1390 \mathrm{~cm}^{2}$
(d) $10 \mathrm{~cm}^{2}$

Section - B

Q. 7 Find the volume of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.
Q. 8 A solid cylinder has a total surface area of $231 \mathrm{~cm}^{2}$. Its curved surface area is $\frac{2}{3}$ of the total surface area. Find the volume of the cylinder.
Q. 9 The diameter of a garden roller is 1.4 m and it is 2 m long. How much area will it cover in 5 revolutions? $(\pi=22 / 7)$
Q. 10 Three metal cubes whose edge measure $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm respectively are melted to form a single cube, find its edge.
Q. 11 The dimensions of a cubiod are in the ratio of $1: 2: 3$ and its total surface area is $88 m^{2}$. Find the dimensions.

Section-C

Q. 12 A cuboidal oil tin is $30 \mathrm{~cm} \times 40 \mathrm{~cm} \times 50 \mathrm{~cm}$. Find the cost of the tin required for making 20 such tins if the cost of tin sheet is Rs. $20 / \mathrm{m}^{2}$.
Q. 13 Find the lateral curved surface area of a cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high. How much steel was actually used, if $\frac{1}{12}$ of steel actually used was wasted in making the closed tank.
Q. 14 The radius and height of a cone are in the ratio $4: 3$. The area of the base is $154 \mathrm{~cm}^{2}$. Find the area of the curved surface.
Q. 15 A sphere, cylinder and cone are of the same radius and same height. Find the ratio of their curved surfaces.
Q. 16 A hemispherical bowl of internal diameter 36 cm contains a liquid. This liquid is to be filled in cylindrical bottles of radius 3 cm and height 6 cm . How many bottles are required to empty the bowl?
Q. 17 A hemisphere of lead of radius 8 cm is cast into a right circular cone of base radius 6 cm . Determine the height of the cone.

Section - D

Q. 18 A wooden toy is in the form of a cone surmounted on a hemisphere. The diameter of the base of the cone is 6 cm and its height is 4 cm . Find the cost of painting the toy at the rate of Rs. 5 per $1000 \mathrm{~cm}^{2}$.
Q. 19 Find the volume of the largest right circular cone that can be fitted in a cube whose edge is 14 cm .
Q. 20 A cone of height 24 cm and slant height 25 cm has a curved surface area $550 \mathrm{~cm}^{2}$. Find its volume use $\pi=\frac{22}{7}$
Q. 21 The radius and height of a cone are 6 cm and 8 cm respectively. Find the curved surface area of the cone.
Q. 22 A well with 10 m inside diameter is dug 14 m deep. Earth taken out of it is spread all around to a width of 5 m to form an embankment. Find the height of embankment.
Q. 23 A metallic sheet is of the rectangular shape with dimensions $48 \mathrm{~cm} \times 36 \mathrm{~cm}$. From each one of its corners, a square of 8 cm is cutoff. An open box is made of the remaining sheet. Find the volume of the box.

self evaluation

Q. 24 Water in a canal, 30dm wide and 12dm deep is flowing with a velocity of 20 km per hour. How much area will it irrigate in 30 min . if 9 cm of standing water is desired? (10dm = 1 meter)
Q. 25 Three cubes of each side 4 cm are joined end to end. Find the surface area of resulting cuboid
Q. 26 A hollow cylindrical pipe is 210 cm long. Its outer and inner diameters are 10 cm and 6 cm respectively. Find the volume of the copper used in making the pipe.
Q. 27 A semi circular sheet of metal of diameter 28 cm is bent into an open conical cup. Find the depth and capacity of cup.
Q. 28 If the radius of a sphere is doubled, what is the ratio of the volume of the first sphere to that of second sphere?

Answer

$\begin{array}{llllllll}\text { Q. } 1 & \text { c } & \text { Q. } 2 & \text { b } & \text { Q. } 3 & \text { b } & \text { Q. } 4 & \text { b }\end{array}$
Q. 5 c Q. 6 a
Q. $7 \quad 179.66 \mathrm{~cm}^{2}$
Q. $8 \quad 269.5 \mathrm{~cm}^{2} \quad$ Q. $9 \quad 44 \mathrm{~m}^{2}$
Q. $106 \mathrm{~cm} \quad$ Q. $11 \quad 2,4,6 \mathrm{~cm}$
Q. 12 Rs. 376
Q. $1359.4 m^{2}, 95.04 m^{2}$
Q. $14 \quad 192.5 \mathrm{~cm}^{2}$
Q. 15 4:4: $\sqrt{5} \quad$ Q. 1672
Q. $1728.44 \quad$ Q. 18 Rs. 0.51
Q. $19 \quad 718.66 \mathrm{~cm}^{3} \quad$ Q. $20 \quad 1232 \mathrm{~cm}^{2}$
Q. $2160 \pi \mathrm{~cm}^{2} \quad$ Q. 224.66 m
Q. $23 \quad 5120 \mathrm{~cm}^{3} \quad$ Q. $24 \quad 4,00,000 \mathrm{~m}^{2}$
Q. $25 \quad 224 \mathrm{~cm}^{2} \quad$ Q. $26 \quad 10560 \mathrm{~cm}^{3}$
Q. $27 \quad 12.12 \mathrm{~cm}, 622.26 \mathrm{~cm}^{3}$
Q. 28 1:8

