Chapter 1 - Relations and Functions

Definitions:

Let A and B be two non-empty sets, then a function f from set A to set B is a rule which associates each element of A to a unique element of B.

• Relation

If $(a, b) \in R$, we say that a is related to b under the relation R and we write as a R b

• Function

It is represented as f: $A \rightarrow B$ and function is also called mapping.

• Real Function

f: A \rightarrow B is called a real function, if A and B are subsets of R.

• Domain and Codomain of a Real Function

Domain and codomain of a function f is a set of all real numbers x for which f(x) is a real number. Here, set A is domain and set B is codomain.

• Range of a real function

f is a set of values f(x) which it attains on the points of its domain

Types of Relations

- A relation R in a set A is called **Empty relation**, if no element of A is related to any element of A, i.e., $R = \phi \subset A \times A$.
- A relation R in a set A is called **Universal relation**, if each element of A is related to every element of A, i.e., R = A × A.
- Both the empty relation and the universal relation are sometimes called **Trivial Relations**
- $\circ \quad A \ relation \ R \ in \ a \ set \ A \ is \ called$
 - Reflexive
 - if $(a, a) \in \mathbb{R}$, for every $a \in \mathbb{A}$,
 - Symmetric
 - If $(a_1, a_2) \in \mathbb{R}$ implies that $(a_2, a_1) \in \mathbb{R}$, for all $a_1, a_2 \in \mathbb{A}$.
 - Transitive
 - If $(a_1, a_2) \in R$ and $(a_2, a_3) \in R$ implies that $(a_1, a_3) \in R$, for all $a_1, a_2, a_3 \in A$.
- A relation R in a set A is said to be an **equivalence relation** if R is reflexive, symmetric and transitive
- The set E of all even integers and the set O of all odd integers are subsets of Z satisfying following conditions:
 - All elements of E are related to each other and all elements of O are related to each other.
 - No element of E is related to any element of O and vice-versa.
 - E and O are disjoint and $Z = E \cup O$.
 - The subset E is called the equivalence class containing zero, Denoted by [0].
 - O is the equivalence class containing 1 and is denoted by [1].

- Note
 - [0] ≠ [1]
 - [0] = [2r]
 - $[1] = [2r + 1], r \in \mathbb{Z}.$
- Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into mutually disjoint subsets Ai called partitions or subdivisions of X satisfying:
 - All elements of Ai are related to each other, for all i.
 - No element of Ai is related to any element of Aj, i ≠ j.
 - $\bullet \quad \cup \ A_j = X \ and \ A_i \cap A_j = \phi, \ i \neq j.$
- \circ $\;$ The subsets A_i are called equivalence classes.

Note:

- Two ways of representing a relation
 - Roaster method
 - Set builder method
- If $(a, b) \in \mathbb{R}$, we say that a is related to b and we denote it as *a R b*.

Types of Functions

Consider the functions f_1 , f_2 , f_3 and f_4 given

A function f: X → Y is defined to be **one-one (or injective**), if the images of distinct elements of X under f are distinct, i.e., for every x₁, x₂ ∈ X, f(x₁) = f(x₂) implies x₁ = x₂. Otherwise, f is called **many-one.**

Example

• A function f: $X \rightarrow Y$ is said to be **onto (or surjective)**, if every element of Y is the image of some element of X under f, i.e., for every $y \in Y$, there exists an element x in X such that f(x) = y.

- $\circ \quad f: X \to Y \text{ is onto if and only if Range of } f = Y.$
- o Eg:

- A function f: X → Y is said to be **one-one and onto (or bijective),** if f is both one-one and onto.
 - Eg:

Composition of Functions and Invertible Function

Composite Function

- Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.
- Then the composition of f and g, denoted by $g \circ f$, is defined as the function $g \circ f$: A \rightarrow C given by $g \circ f(x) = g(f(x)), \forall x \in A$.

- Eg:
 - Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions
 - Defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5 and g(3) = g(4) = 7 and g(5) = g(9) = 11.
 - \circ Find $g \circ f$.
 - \circ Solution
 - $g \circ f(2) = g(f(2)) = g(3) = 7$,
 - $g \circ f(3) = g(f(3)) = g(4) = 7$,
 - $g \circ f(4) = g(f(4)) = g(5) = 11$ and
 - $g \circ f(5) = g(5) = 11$
- It can be verified in general that gof is one-one implies that f is one-one. Similarly, gof is onto implies that g is onto.

- While composing f and g, to get gof, first f and then g was applied, while in the reverse process of the composite gof, first the reverse process of g is applied and then the reverse process of f.
- If f: X → Y is a function such that there exists a function g: Y → X such that gof = IX and fog = IY, then f must be one-one and onto.

Invertible Function

- A function f: X → Y is defined to be invertible, if there exists a function g: Y → X such that gof = IX and fog = IY. The function g is called the inverse of f
- Denoted by f⁻¹.

• Thus, if f is invertible, then f must be one-one and onto and conversely, if f is one-one and onto, then f must be invertible.

Theorem 1

- If $f: X \to Y$, $g: Y \to Z$ and $h: Z \to S$ are functions, then $\circ h \circ (g \circ f) = (h \circ g) \circ f$.
- Proof
- We have
 - $\circ \quad h \circ (g \circ f) (x) = h(g \circ f (x)) = h(g(f(x))), \forall x \text{ in } X$
 - $\circ \quad (h \circ g) \circ f(x) = h \circ g(f(x)) = h(g(f(x))), \forall x \text{ in } X.$

Hence, $h \circ (g \circ f) = (h \circ g) \circ f$

Theorem 2

- Let $f: X \to Y$ and $g: Y \to Z$ be two invertible functions.
 - $\circ \quad \text{Then gof is also invertible with } (g \circ f)^{\text{-1}} = f^{\text{-1}} \circ g^{\text{-1}}$
- Proof

○ To show that gof is invertible with $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$, it is enough to show that $(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_X$ and $(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_Z$. Now, $(f^{-1} \circ g^{-1}) \circ (g \circ f) = ((f^{-1} \circ g^{-1}) \circ g)$ of, by Theorem 1 $= (f^{-1} \circ (g^{-1} \circ g))$ of, by Theorem 1 $= (f^{-1} \circ I_Y)$ of, by definition of g^{-1} $= I_X$

Similarly, it can be shown that $(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_Z$

Binary Operations

Definitions:

• A binary operation * on a set A is a function $* : A \times A \rightarrow A$. We denote * (a, b) by a * b.

- A binary operation * on the set X is called commutative, if a * b = b * a, for every $a, b \in X$
- A binary operation $* : A \times A \rightarrow A$ is said to be associative if $(a * b) * c = a * (b * c), \forall a, b, c, \in A$.
- A binary operation * : A × A → A, an element e ∈ A, if it exists, is called identity for the operation *, if a * e = a = e * a, ∀ a ∈ A.
 - Zero is identity for the addition operation on R but it is not identity for the addition operation on N, as 0 ∉ N.
 - Addition operation on N does not have any identity.
 - For the addition operation + : R × R → R, given any a ∈ R, there exists a in R such that a + (- a) = 0 (identity for '+') = (- a) + a.
 - For the multiplication operation on R, given any $a \neq 0$ in R, we can choose $\frac{1}{a}$ such that a $X \frac{1}{a} = 1$ (identity for '×') = $1 = \frac{1}{a}X$ a
- A binary operation * : A × A → A with the identity element e in A, an element a ∈ A is said to be invertible with respect to the operation *, if there exists an element b in A such that a * b = e = b * a and b is called the inverse of a and is denoted by a⁻¹