Chapter 1 - Relations and Functions

Definitions:

Let A and B be two non-empty sets, then a function f from set A to set B is a rule which associates each element of A to a unique element of B.

- Relation

If $(a, b) \in R$, we say that a is related to b under the relation R and we write as $a R b$

- Function

It is represented as $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and function is also called mapping.

- Real Function
$f: A \rightarrow B$ is called a real function, if A and B are subsets of R.
- Domain and Codomain of a Real Function

Domain and codomain of a function f is a set of all real numbers x for which $f(x)$ is a real number. Here, set A is domain and set B is codomain.

- Range of a real function
f is a set of values $f(x)$ which it attains on the points of its domain

Types of Relations

- A relation R in a set A is called Empty relation, if no element of A is related to any element of A, i.e., $R=\varphi \subset A \times A$.
- A relation R in a set A is called Universal relation, if each element of A is related to every element of A, i.e., $\mathrm{R}=\mathrm{A} \times \mathrm{A}$.
- Both the empty relation and the universal relation are sometimes called Trivial Relations
- A relation R in a set A is called
- Reflexive
- if $(a, a) \in R$, for every $a \in A$,
- Symmetric
- If $\left(a_{1}, a_{2}\right) \in R$ implies that $\left(a_{2}, a_{1}\right) \in R$, for all $a_{1}, a_{2} \in A$.
- Transitive
- If $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ implies that $\left(a_{1}, a_{3}\right) \in R$, for all $a_{1}, a_{2}, a_{3} \in A$.
- A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive
- The set E of all even integers and the set O of all odd integers are subsets of Z satisfying following conditions:
- All elements of E are related to each other and all elements of O are related to each other.
- No element of E is related to any element of O and vice-versa.
- E and O are disjoint and $\mathrm{Z}=\mathrm{E} \cup \mathrm{O}$.
- The subset E is called the equivalence class containing zero, Denoted by [o].
- O is the equivalence class containing 1 and is denoted by [1].
- Note
- $[0] \neq[1]$
- $\quad[\mathrm{o}]=[2 \mathrm{r}]$
- $\quad[1]=[2 r+1], r \in Z$.
- Given an arbitrary equivalence relation R in an arbitrary set X, R divides X into mutually disjoint subsets Ai called partitions or subdivisions of X satisfying:
- All elements of Ai are related to each other, for all i.
- No element of $A i$ is related to any element of $A j, i \neq j$.
- $U A_{j}=X$ and $A_{i} \cap A_{j}=\varphi, i \neq j$.
- The subsets A_{i} are called equivalence classes.

Note:

- Two ways of representing a relation
- Roaster method
- Set builder method
- If $(a, b) \in R$, we say that a is related to b and we denote it as $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$.

Types of Functions

Consider the functions f_{1}, f_{2}, f_{3} and f_{4} given

- A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is defined to be one-one (or injective), if the images of distinct elements of X under f are distinct, i.e., for every $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}, \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ implies $\mathrm{x}_{1}=\mathrm{x}_{2}$. Otherwise, f is called many-one.

Example

- One- One Function

- Many-One Function

- A function $f: X \rightarrow Y$ is said to be onto (or surjective), if every element of Y is the image of some element of X under f, i.e., for every $y \in Y$, there exists an element x in X such that $f(x)=y$.
- $f: X \rightarrow Y$ is onto if and only if Range of $f=Y$.
- Eg:

- A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be one-one and onto (or bijective), if f is both one-one and onto.
- Eg:

Composition of Functions and Invertible Function

Composite Function

- Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.
- Then the composition of f and g , denoted by $\boldsymbol{g}{ }_{\circ} \boldsymbol{f}$, is defined as the function $\boldsymbol{g} \circ \boldsymbol{f}: \mathrm{A} \rightarrow \mathrm{C}$ given by $\boldsymbol{g} \circ f(x)=g(f(x)), \forall x \in A$.

- Eg:
- Let $\mathrm{f}:\{2,3,4,5\} \rightarrow\{3,4,5,9\}$ and $\mathrm{g}:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions
- Defined as $f(2)=3, f(3)=4, f(4)=f(5)=5$ and $g(3)=g(4)=7$ and $g(5)=g(9)=11$.
- Find gof.
- Solution
- $\quad g \circ f(2)=g(f(2))=g(3)=7$,
- $\quad g \circ f(3)=g(f(3))=g(4)=7$,
- $\quad g \circ f(4)=g(f(4))=g(5)=11$ and
- $g \circ f(5)=g(5)=11$
- It can be verified in general that gof is one-one implies that f is one-one. Similarly, gof is onto implies that g is onto.
- While composing f and g , to get gof, first f and then g was applied, while in the reverse process of the composite gof, first the reverse process of g is applied and then the reverse process of f.
- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a function such that there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=\mathrm{IX}$ and fog $=$ $I Y$, then f must be one-one and onto.

Invertible Function

- A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is defined to be invertible, if there exists a function $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=$ IX and fog $=I Y$. The function g is called the inverse of f
- Denoted by f^{-1}.

- Thus, if f is invertible, then f must be one-one and onto and conversely, if f is one-one and onto, then f must be invertible.

Theorem 1

- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{h}: \mathrm{Z} \rightarrow \mathrm{S}$ are functions, then
$\circ h \circ(g \circ f)=(h \circ g) \circ f$.
- Proof

We have

- $h_{\circ}(g \circ f)(x)=h(g \circ f(x))=h(g(f(x))), \forall x$ in X
$\circ \quad(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}(\mathrm{x})=\mathrm{h} \circ \mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{h}(\mathrm{g}(\mathrm{f}(\mathrm{x}))), \forall \mathrm{x}$ in X .
Hence, $\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})=(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}$

Theorem 2

- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two invertible functions.
- Then gof is also invertible with $(\mathrm{g} \circ \mathrm{f})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}$
- Proof
- To show that gof is invertible with $(\mathrm{g} \circ \mathrm{f})^{-1}=\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}$, it is enough to show that
$\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \circ(\mathrm{g} \circ \mathrm{f})=\mathrm{I}_{\mathrm{X}}$ and $(\mathrm{g} \circ \mathrm{f}) \circ\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right)=\mathrm{I}_{\mathrm{Z}}$.
Now, $\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \mathrm{o}(\mathrm{g} \circ \mathrm{f})=\left(\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right) \circ \mathrm{g}\right)$ of, by Theorem 1

$$
\begin{aligned}
& =\left(\mathrm{f}^{-1} \circ\left(\mathrm{~g}^{-1} \circ \mathrm{~g}\right)\right) \text { of, by Theorem } 1 \\
& =\left(\mathrm{f}^{-1} \circ \mathrm{I}_{\mathrm{Y}}\right) \text { of, by definition of } \mathrm{g}^{-1} \\
& =\mathrm{I}_{\mathrm{X}}
\end{aligned}
$$

Similarly, it can be shown that ($\mathrm{g} \circ \mathrm{f}$) $\circ\left(\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}\right)=\mathrm{I}_{\mathrm{Z}}$

Binary Operations

Definitions:

- A binary operation $*$ on a set A is a function $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$. We denote $*(\mathrm{a}, \mathrm{b})$ by a $* \mathrm{~b}$.
- A binary operation $*$ on the set X is called commutative, if $a * b=b * a$, for every $a, b \in X$
- A binary operation $*: A \times A \rightarrow A$ is said to be associative if $(a * b) * c=a *(b * c), \forall a, b, c, \in A$.
- A binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$, an element $\mathrm{e} \in \mathrm{A}$, if it exists, is called identity for the operation $*$, if $a * e=a=e * a, \forall a \in A$.
- Zero is identity for the addition operation on R but it is not identity for the addition operation on N , as o $\notin \mathrm{N}$.
- Addition operation on N does not have any identity.
- For the addition operation $+: R \times R \rightarrow R$, given any $a \in R$, there exists $-a$ in R such that $a+(-a)=0$ (identity for ${ }^{\prime}+$ ’) $=(-a)+a$.
- For the multiplication operation on R , given any $\mathrm{a} \neq \mathrm{o}$ in R , we can choose $\frac{1}{a}$ such that a $\mathrm{X} \frac{1}{a}=1$ (identity for ' \times ') $=1=\frac{1}{a} \mathrm{X}$ a
- A binary operation $*: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the identity element e in A , an element $\mathrm{a} \in \mathrm{A}$ is said to be invertible with respect to the operation $*$, if there exists an element b in A such that $a * b=e=$ $b * a$ and b is called the inverse of a and is denoted by a^{-1}

