CHAPTER 9: Area of Parallelograms and Triangles

Two figures are said to be on the same base and between the same parallels, if they have a common base (side) and the vertices (or the vertex) opposite to the common base of each figure lie on a line parallel to the base. Examples:

- Area of triangle is half the product of its base (or any side) and the corresponding altitude (or height).
- Two triangles with same base (or equal bases) and equal areas will have equal corresponding altitudes.
- A median of a triangle divides it into two triangles of equal areas.

Theorems and Proofs(wherever required):

Theorem: 1

Statement: Parallelograms on the same base and between the same parallels are equal in area.

Given : Two parallelograms *ABCD* and *EBCF* on the same base *BC* and between the same parallels *BC* and *AF*.

To prove : $ar(||^{gm} ABCD) = ar(||^{gm} EBCF)$

Proof : In $\triangle ABE$ and $\triangle DCF$,

$$\angle EAB = \angle FDC$$
 $\begin{pmatrix} AB \parallel CD, AF \text{ is the transversal} \\ \therefore \text{ pair of corresponding angles are equal} \end{pmatrix}$...(i)

$$∠BEA = ∠CFD$$
 $\begin{pmatrix} AB \parallel CD, AF \text{ is the transversal} \\ ∴ \text{ pair of corresponding angles are equal} \end{pmatrix}$...(ii)

 $\angle EAB + \angle ABE + \angle BEA = \angle FDC + \angle DCF + \angle CFD = 180^{\circ}$

(sum of measure of the interior angles of a triangle is 180°)

$$\angle ABE = \angle DCF$$

...(iii)[using (i) and (ii)]

Also, AB = DC

(Opposite side of $\| g^m$ are equal) ...(iv)

Therefore, using (i), (iii) and (iv),
$$\triangle ABE \cong \triangle DCF$$

(ASA rule)

$$ar (\Delta ABE) = ar (\Delta DCF)$$

$$ar(||^{gm} ABCD) = ar(\Delta ABE) + ar(trapezium EBCD)$$

= $ar(\Delta DCF) + ar(trapezium EBCD)$

= ar (|| gm EBCF)

Hence,
$$ar(\parallel^{gm} ABCD) = ar(\parallel^{gm} EBCF)$$

Theorem: 2

Statement: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

Given : Two triangles $\triangle ABC$ and $\triangle DBC$ are on the same base BC and between the same parallels EF and BC. **To prove :** ar ($\triangle ABC$) = ar ($\triangle DBC$)

Construction: Through B, draw $BE \parallel AC$, intersecting the line AD produced in E and through C, draw

 $CF \parallel BD$, intersecting the line AD produced in F.

Proof: *EACB* and *DFCB* are parallelograms (since two pairs of opposite sides are parallel).

Also \parallel^{gm} *EACB* and \parallel^{gm} *DFCB* are on the same base *BC* and between the same parallels EF and BC.

$$ar(||^{\operatorname{gm}} EACB) = ar(||^{\operatorname{gm}} DFCB)$$
 ...(i)

Now, *AB* is the diagonal of \parallel gm *EACB*

ar (ΔEAB) = ar (ΔABC) [Diagonal of parallelogram divides it in congruent triangle]

 $ar\left(\Delta ABC\right) = \frac{1}{2} ar\left(||\operatorname{gm} EACB\right)$...(ii)

Similarly, $ar\left(\Delta DBC\right) = \frac{1}{2} ar\left(\|\operatorname{gm} DFCB\right) \dots (iii)$

From equations (i), (ii) and (iii), we get, $ar(\Delta ABC) = ar(\Delta DBC)$

Theorem: 3

Statement : Two triangles on the same base (or equal bases) and equal areas lie between the same parallels.