Limits and Derivatives

Introduction

• Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change.

Limits

- In general as $x \to a$, $f(x) \to l$, then l is called limit of the function f(x)
 - Symbolically written as $\lim_{x \to a} f(x) = l$.
 - For all the limits, function should assume at a given point x = a
- The two ways x could approach a number an either from left or from right, i.e., all the values of x near a could be less than a or could be greater than a.
- The two types of limits
 - o Right hand limit
 - Value of f(x) which is dictated by values of f(x) when x tends to from the right.
 - Left hand limit.
 - Value of f(x) which is dictated by values of f(x) when x tends to from the left.
- In this case the right and left hand limits are different, and hence we say that the limit of f(x) as x tends to zero does not exist (even though the function is defined at 0).

Algebra of limits

Theorem 1

Let f and g be two functions such that both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then

• Limit of sum of two functions is sum of the limits of the function s,i.e

 $\lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$

 \circ $\;$ Limit of difference of two functions is difference of the limits of the functions, i.e.

 $\lim_{x \to a} \left[f(x) - g(x) \right] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$

 \circ $\;$ Limit of product of two functions is product of the limits of the functions, i.e.,

 $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$

 $\circ~$ Limit of quotient of two functions is quotient of the limits of the functions (whenever the denominator is non zero), i.e.,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

 $\circ~$ In particular as a special case of (iii), when g is the constant function such that g(x) = λ , for some real number λ , we have

$$\lim_{x \to a} \left[\left(\lambda f \right) \left(x \right) \right] = \lambda \lim_{x \to a} f \left(x \right)$$

Limits of polynomials and rational functions

• A function f is said to be a polynomial function if f(x) is zero function or if $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, where $a_i S$ is are real numbers such that an $\neq 0$ for some natural number n.

$$\lim_{x \to a} x = a.$$
We know that $x \to a$

$$\lim_{x \to a} x^2 = \lim_{x \to a} (x.x) = \lim_{x \to a} x. \lim_{x \to a} x = a. a = a^2$$
Hence,
$$\lim_{x \to a} x^n = a^n$$
• Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ be a polynomial function
$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[a_0 + a_1 x + a_2 x^2 + ... + a_n x^n\right]$$

$$= \lim_{x \to a} a_0 + \lim_{x \to a} a_1 x + \lim_{x \to a} a_2 x^2 + ... + \lim_{x \to a} a_n x^n$$

$$= a_0 + a_1 \lim_{x \to a} x + a_2 \lim_{x \to a} x^2 + ... + a_n \lim_{x \to a} x^n$$

$$= a_0 + a_1 a + a_2 a^2 + ... + a_n a^n$$

$$= f(a)$$

>

A function f is said to be a rational function, if $f(x) = \frac{g(x)}{h(x)}$ where g(x) and h(x) are polynomials • such that $h(x) \neq 0$. Then

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{g(x)}{h(x)} = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{g(a)}{h(a)}$$

- However, if h(a) = 0, there are two scenarios • • when $g(a) \neq 0$
 - - limit does not exist
 - When g(a) = 0.
 - $g(x) = (x a)^k g_1(x)$, where k is the maximum of powers of (x a) in g(x)
 - . Similarly, $h(x) = (x - a)^{1} h_{1}(x)$ as h(a) = 0. Now, if $k \ge 1$, we have

$$\lim_{x \to a} f(x) = \frac{\lim_{x \to a} g(x)}{\lim_{x \to a} h(x)} = \frac{\lim_{x \to a} (x-a)^k g_1(x)}{\lim_{x \to a} (x-a)^l h_1(x)}$$
$$= \frac{\lim_{x \to a} (x-a)^{(k-l)} g_1(x)}{\lim_{x \to a} h_1(x)} = \frac{0.g_1(a)}{h_1(a)} = 0$$

If k < l, the limit is not defined.

Theorem 2

For any positive integer n

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

Proof

Dividing
$$(x^{n} - a^{n})$$
 by $(x - a)$, we see that
 $x^{n} - a^{n} = (x - a) (x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + ... + x a^{n-2} + a^{n-1})$

$$\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} = \lim_{x \to a} (x^{n-1} + x^{n-2}a + x^{n-3}a^{2} + ... + x a^{n-2} + a^{n-1})$$

$$= a^{n-1} + a a^{n-2} + ... + a^{n-2} (a) + a^{n-1}$$

$$= a^{n-1} + a^{n-1} + ... + a^{n-1} + a^{n-1} (n \text{ terms})$$

$$= na^{n-1}$$

Note:

The expression in the above theorem for the limit is true even if n is any rational number and a is positive.

Limits of Trigonometric Functions

Theorem 3

Let f and g be two real valued functions with the same domain such that $f(x) \le g(x)$ for all x in the domain of definition,

For some a, if both $x \to a = f(x)$ and $\lim_{x \to a} g(x)$ exist, then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

Theorem 4 (Sandwich Theorem)

Let f, g and h be real functions such that $f(x) \le g(x) \le h(x)$ for all x in the common domain of definition.

For some real number
$$a$$
, if $\lim_{x \to a} f(x) = l = \lim_{x \to a} h(x)$, then $\lim_{x \to a} g(x) = l$.

To Prove:

$$\cos x < \frac{\sin x}{x} < 1 \qquad \text{for } 0 < \left| x \right| < \frac{\pi}{2}$$

Proof:

We know that sin (- x) = - sin x and cos (- x) = cos x. Hence, it is sufficient to prove the $0 < x < \frac{\pi}{2}$ inequality for

 $0 < x < \frac{\pi}{2}$

- is the centre of the unit circle such that the angle AOC is x radians and
- Line segments B A and CD are perpendiculars to OA. Further, join AC. Then
- Area of $\triangle OAC < Area of sector OAC < Area of <math>\triangle OAB$

i.e., $\frac{1}{2}$ OA.CD $< \frac{x}{2\pi} \cdot \pi \cdot (OA)^2 < \frac{1}{2}$ OA.AB. i.e., CD $< x \cdot OA < AB$. From \triangle OCD, $\sin x = \frac{CD}{OA}$ (since OC = OA) and hence CD = OA sin x. Also $\tan x = \frac{AB}{OA}$ and hence AB = OA. tan x. Thus OA sin x < OA. x < OA. tan x. Since length OA is positive, we have $\sin x < x < \tan x$. Since $0 < x < \frac{\pi}{2}$, sinx is positive and thus by dividing throughout by sin x, we have $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$. Taking reciprocals throughout, we have $\sin x < x < \tan x$. Since $0 < x < \frac{\pi}{2}$, sinx is positive and thus by dividing throughout by sin x, we have $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$. Taking reciprocals throughout, we have $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$. Taking reciprocals throughout by sin x, we have

Hence Proved

The following are two important limits

(i)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
. (ii) $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

Proof:

sin x

The function x is sandwiched between the function $\cos x$ and the constant function which takes value 1.

$$\lim_{x \to 0} \cos x = 1$$
, also we know that $1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right)$.

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \sin\left(\frac{x}{2}\right)$$
$$= \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \lim_{x \to 0} \sin\left(\frac{x}{2}\right) = 1.0 = 0$$

Using the fact that $x \to 0$ is equivalent to $\frac{x}{2} \to 0$. This may be justified by putting $y = \frac{x}{2}$

Derivatives

Some Real time Applications

- People maintaining a reservoir need to know when will a reservoir overflow knowing the depth of the water at several instances of time
- Rocket Scientists need to compute the precise velocity with which the satellite needs to be shot out from the rocket knowing the height of the rocket at various times.
- Financial institutions need to predict the changes in the value of a particular stock knowing its present value.
- Helpful to know how a particular parameter is changing with respect to some other parameter.
- Derivative of a function at a given point in its domain of definition.

Definition 1

- Suppose f is a real valued function and a is a point in its domain of definition.
- The derivative of f at a is defined by

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 Provided this limit exists.

• Derivative of f(x) at a is denoted by f'(a)

Definition 2

• Suppose f is a real valued function, the function defined by

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Wherever limit exists is defined to be derivative of f at x

- Denoted by f'(x).
- This definition of derivative is also called the **first principle of derivative**.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Thus

$$\frac{d}{du}(f($$

or if y = f(x), it is denoted by dy/dx. \circ f'(x) is denoted by dx

- \circ This is referred to as derivative of f(x) or y with respect to x.
- It is also denoted by D (f(x)).
- Further, derivative of f at x = a

$$\frac{d}{dx}f(x)\Big|_a$$
 or $\frac{df}{dx}\Big|_a$ or even $\left(\frac{df}{dx}\right)_{x=a}$.

is also denoted by

Theorem 5

Let f and g be two functions such that their derivatives are defined in a common domain. Then \cap • Derivative of sum of two functions is sum of the derivatives of the functions.

$$\frac{d}{dx}\left[f(x)+g(x)\right] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

o Derivative of difference of two functions is difference of the derivatives of the functions.

6

$$\frac{d}{dx}\left[f(x) - g(x)\right] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

 \circ $\;$ Derivative of product of two functions is given by following product rule.

$$\frac{d}{dx}\left[f(x) \cdot g(x)\right] = \frac{d}{dx}f(x) \cdot g(x) + f(x) \cdot \frac{d}{dx}g(x)$$

• Derivative of quotient of two functions is given by the following quotient rule (whenever the denominator is non-zero).

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{d}{dx}f(x) \cdot g(x) - f(x)}{\left(g(x)\right)^2} \frac{d}{dx}g(x)}{\left(g(x)\right)^2}$$

- $\circ \quad \text{Let } u = f(x) = \text{ and } v = g(x).$
 - Product Rule:
 - (uv)' = u'v + uv'.
 - Also referred as Leibnitz rule for differentiating product of functions
 - Quotient rule

•

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

• Derivative of the function f(x) = x is the constant

Theorem 6

- Derivative of $f(x) = x^n$ is nx^{n-1} for any positive integer n.
- \circ **Proof**
 - \circ $\;$ By definition of the derivative function, we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}.$$

Binomial theorem tells that $(x+h)^n = \binom{n}{C_0}x^n + \binom{n}{C_1}x^{n-1}h + \dots + \binom{n}{C_n}h^n$ and hence $(x+h)^n - x^n = h(nx^{n-1} + \dots + h^{n-1})$. Thus

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$
$$= \lim_{h \to 0} \frac{h(nx^{n-1} + \dots + h^{n-1})}{h}$$
$$= \lim_{h \to 0} (nx^{n-1} + \dots + h^{n-1}), = nx^{n-1}.$$

• This can be proved as below alternatively

$$\frac{d}{dx}(x^n) = \frac{d}{dx}(x \cdot x^{n-1})$$
$$= \frac{d}{dx}(x) \cdot (x^{n-1}) + x \cdot \frac{d}{dx}(x^{n-1}) \text{ (by product rule)}$$
$$= 1 \cdot x^{n-1} + x \cdot ((n-1)x^{n-2}) \text{ (by induction hypothesis)}$$
$$= x^{n-1} + (n-1)x^{n-1} = nx^{n-1}.$$

Theorem 7

• Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial function, where a_i s are all real numbers and $a_n \neq 0$. Then, the derivative function is given by

$$\frac{df(x)}{dx} = na_n x^{n-1} + (n-1)a_{n-1}x^{x-2} + \dots + 2a_2 x + a_1.$$

Quick Reference:

• For functions f and g the following holds:

$$egin{aligned} &\lim_{x o a} [f(x)\pm g(x)] =&\lim_{x o a} f(x)\pm \lim_{x o a} g(x) \ &\lim_{x o a} \left[f(x).\,g(x)
ight] =&\lim_{x o a} f(x).\lim_{x o a} g(x) \ &\lim_{x o a} \left[rac{f(x)}{g(x)}
ight] =& rac{\lim_{x o a} f(x)}{\lim_{x o \infty} g(x)} \end{aligned}$$

• Following are some of the standard limits

$$egin{aligned} \lim_{x o a}rac{x^n-a^n}{x-a}&=na^{n-1}\ \lim_{x o 0}rac{\sin x}{x}&=1,\lim_{x o a}rac{\sin(x-a)}{x-a}=1\ \lim_{x o 0}rac{1-\cos x}{x}&=0\ \lim_{x o 0}rac{\tan x}{x}&=1,\lim_{x o a}rac{ an (x-a)}{x-a}=1\ \lim_{x o 0}rac{\sin^{-1}x}{x}&=1,\lim_{x o 0}rac{ an (x-a)}{x}=1\ \lim_{x o 0}rac{\sin^{-1}x}{x}&=1,\lim_{x o 0}rac{ an (x-a)}{x}=1\ \lim_{x o 0}rac{a^x-1}{x}&=\log_e a,a>0,a\neq 1\end{aligned}$$

• Derivatives

 \circ $\;$ The derivative of a function f at a is defined by

$$f'(a) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

 \circ Derivative of a function f at any point x is defined by

$$f'(x)=rac{df(x)}{dx}=\lim_{h
ightarrow 0}rac{f(x+h)-f(x)}{h}$$

• For functions u and v the following holds:

 $egin{aligned} (u\pm v)' &= u'\pm v' \ (uv)' &= u'v+uv' & \Rightarrow & rac{d}{dx}\,(uv) &= u.\,rac{dv}{dx}+v.\,rac{du}{dx} \ &\left(rac{u}{v}
ight)' &= rac{u'v-uv'}{v^2} & \Rightarrow & rac{d}{dx}\,ig(rac{u}{v}ig) &= rac{v.\,rac{du}{dx}-u.\,rac{dv}{dx} \ &v^2 \end{aligned}$

- Following are some of the standard derivatives
 - $egin{aligned} rac{d}{dx}(x^n) &= nx^{n-1} \ rac{d}{dx}(\sin x) &= \cos x \ rac{d}{dx}(\cos x) &= -\sin x \ rac{d}{dx}(\cos x) &= -\sin x \ rac{d}{dx}(\tan x) &= \sec^2 x \ rac{d}{dx}(\cot x) &= -\cos ec^2 x \ rac{d}{dx}(\sec x) &= \sec x . an x \ rac{d}{dx}(\cos ecx) &= -\cos ecx . an x \end{aligned}$