Limits and Derivatives

Introduction

- Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change.

Limits

- In general as $\mathrm{x} \rightarrow \mathrm{a}, \mathrm{f}(\mathrm{x}) \rightarrow 1$, then 1 is called limit of the function $\mathrm{f}(\mathrm{x})$
- Symbolically written as $\lim _{x \rightarrow a} f(x)=l$.
- For all the limits, function should assume at a given point $\mathrm{x}=\mathrm{a}$
- The two ways x could approach a number an either from left or from right, i.e., all the values of x near a could be less than a or could be greater than a.
- The two types of limits
- Right hand limit
- Value of $f(x)$ which is dictated by values of $f(x)$ when x tends to from the right.
- Left hand limit.
- Value of $f(x)$ which is dictated by values of $f(x)$ when x tends to from the left.
- In this case the right and left hand limits are different, and hence we say that the limit of $f(x)$ as x tends to zero does not exist (even though the function is defined at 0).

Algebra of limits

Theorem 1

Let f and g be two functions such that both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

- Limit of sum of two functions is sum of the limits of the function s,i.e
$\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
- Limit of difference of two functions is difference of the limits of the functions, i.e.
$\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} \mathrm{~g}(x)$
- Limit of product of two functions is product of the limits of the functions, i.e.,
$\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) . \lim _{x \rightarrow a} g(x)$.
- Limit of quotient of two functions is quotient of the limits of the functions (whenever the denominator is non zero), i.e.,
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
- In particular as a special case of (iii), when g is the constant function such that $g(x)=\lambda$, for some real number λ, we have

$$
\lim _{x \rightarrow a}[(\lambda \cdot f)(x)]=\lambda \cdot \lim _{x \rightarrow a} f(x)
$$

Limits of polynomials and rational functions

- A function f is said to be a polynomial function if $\mathrm{f}(\mathrm{x})$ is zero function or if $\mathrm{f}(\mathrm{x})=$ $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where $\mathrm{a}_{\mathrm{i}} \mathrm{S}$ is are real numbers such that an $\neq 0$ for some natural number n.
- We know that $\lim _{x \rightarrow a} x=a$.
$\lim _{x \rightarrow a} x^{2}=\lim _{x \rightarrow a}(x \cdot x)=\lim _{x \rightarrow a} x \cdot \lim _{x \rightarrow a} x=a . a=a^{2}$
Hence,
$\lim _{x \rightarrow a} x^{n}=a^{n}$
- Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial function

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left[a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right] \\
& =\lim _{x \rightarrow a} a_{0}+\lim _{x \rightarrow a} a_{1} x+\lim _{x \rightarrow a} a_{2} x^{2}+\ldots+\lim _{x \rightarrow a} a_{n} x^{n} \\
& =a_{0}+a_{1} \lim _{x \rightarrow a} x+a_{2} \lim _{x \rightarrow a} x^{2}+\ldots+a_{n} \lim _{x \rightarrow a} x^{n} \\
& =a_{0}+a_{1} a+a_{2} a^{2}+\ldots+a_{n} a^{n} \\
& =f(a)
\end{aligned}
$$

- A function f is said to be a rational function, if $\mathrm{f}(\mathrm{x})=\frac{g(x)}{h(x)}$ where $g(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are polynomials such that $\mathrm{h}(\mathrm{x}) \neq 0$.
Then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{g(x)}{h(x)}=\frac{\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} h(x)}=\frac{g(a)}{h(a)}
$$

- However, if $\mathrm{h}(\mathrm{a})=0$, there are two scenarios -
- when $g(a) \neq 0$
- limit does not exist
- When $g(a)=0$.
- $g(x)=(x-a)^{k} g_{1}(x)$, where k is the maximum of powers of $(x-a)$ in $g(x)$
- Similarly, $h(x)=(x-a)^{1} h_{1}(x)$ as $h(a)=0$. Now, if $k \geq 1$, we have

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=\frac{\lim _{x \rightarrow a} g(x)}{\lim _{x \rightarrow a} h(x)}=\frac{\lim _{x \rightarrow a}(x-a)^{k} g_{1}(x)}{\lim _{x \rightarrow a}(x-a)^{l} h_{1}(x)} \\
& =\frac{\lim _{x \rightarrow a}(x-a)^{(k-l)} g_{1}(x)}{\lim _{x \rightarrow a} h_{1}(x)}=\frac{0 . g_{1}(a)}{h_{1}(a)}=0
\end{aligned}
$$

If $\mathrm{k}<1$, the limit is not defined.

Theorem 2

For any positive integer n
$\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$

Proof

Dividing $\left(x^{n}-a^{n}\right)$ by $(x-a)$, we see that
$x^{n}-a^{n}=(x-a)\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\ldots+x a^{n-2}+a^{n-1}\right)$
$\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=\lim _{x \rightarrow a}\left(x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\ldots+x a^{n-2}+a^{n-1}\right)$

$$
\begin{aligned}
& =a^{n-1}+a a^{n-2}+\ldots+a^{n-2}(a)+a^{n-1} \\
& =a^{n-1}+a^{n-1}+\ldots+a^{n-1}+a^{n-1}(n \text { terms }) \\
& =n a^{n-1}
\end{aligned}
$$

Note:

The expression in the above theorem for the limit is true even if n is any rational number and a is positive.

Limits of Trigonometric Functions

Theorem 3

Let f and g be two real valued functions with the same domain such that $f(x) \leq g(x)$ for all x in the domain of definition,

For some a, if both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$

Theorem 4 (Sandwich Theorem)

Let f , g and h be real functions such that $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{h}(\mathrm{x})$ for all x in the common domain of definition.

For some real number a, if $\lim _{x \rightarrow a} f(x)=l=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=l$.

To Prove:

$$
\cos x<\frac{\sin x}{x}<1 \quad \text { for } 0<|x|<\frac{\pi}{2}
$$

Proof:

We know that $\sin (-\mathrm{x})=-\sin \mathrm{x}$ and $\cos (-\mathrm{x})=\cos \mathrm{x}$. Hence, it is sufficient to prove the inequality for $0<x<\frac{\pi}{2}$

- is the centre of the unit circle such that the angle AOC is x radians and $0<x<\frac{\pi}{2}$
- Line segments B A and CD are perpendiculars to OA. Further, join AC. Then
- Area of $\triangle \mathrm{OAC}<$ Area of sector OAC $<$ Area of $\triangle \mathrm{OAB}$
i.e., $\quad \frac{1}{2} \mathrm{OA} . \mathrm{CD}<\frac{x}{2 \pi} \cdot \pi .(\mathrm{OA})^{2}<\frac{1}{2} \mathrm{OA} . \mathrm{AB}$.
i.e., $\mathrm{CD}<x . \mathrm{OA}<\mathrm{AB}$.

From \triangle OCD,

$$
\sin x=\frac{\mathrm{CD}}{\mathrm{OA}}(\text { since } \mathrm{OC}=\mathrm{OA}) \text { and hence } \mathrm{CD}=\mathrm{OA} \sin x \text {. Also } \tan x=\frac{\mathrm{AB}}{\mathrm{OA}} \text { and }
$$

hence $\quad \mathrm{AB}=\mathrm{OA} \cdot \tan x$. Thus

$$
\text { OA } \sin x<\text { OA. } x<\text { OA. } \tan x .
$$

Since length OA is positive, we have

$$
\sin x<x<\tan x .
$$

Since $0<x<\frac{\pi}{2}, \sin x$ is positive and thus by dividing throughout by $\sin x$, we have

$$
\begin{aligned}
& 1<\frac{x}{\sin x}<\frac{1}{\cos x} \text {. Taking reciprocals throughout, we have } \\
& \sin x<x<\tan x .
\end{aligned}
$$

Since $0<x<\frac{\pi}{2}, \sin x$ is positive and thus by dividing throughout by $\sin x$, we have

$$
\begin{aligned}
& 1<\frac{x}{\sin x}<\frac{1}{\cos x} . \text { Taking reciprocals throughout, we have } \\
& \cos x<\frac{\sin x}{x}<1
\end{aligned}
$$

Hence Proved
The following are two important limits
(i) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
(ii) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

Proof:

The function $\frac{\sin x}{x}$ is sandwiched between the function $\cos \mathrm{x}$ and the constant function which takes value 1 .

Since $\lim _{x \rightarrow 0} \cos x=1$, also we know that $1-\cos x=2 \sin ^{2}\left(\frac{x}{2}\right)$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x} & =\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{x}=\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \sin \left(\frac{x}{2}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \cdot \lim _{x \rightarrow 0} \sin \left(\frac{x}{2}\right)=1.0=0
\end{aligned}
$$

Using the fact that $\mathrm{x} \rightarrow 0$ is equivalent to $\frac{x}{2} \rightarrow 0$. This may be justified by putting $\mathrm{y}=\frac{x}{2}$

Derivatives

- Some Real time Applications
- People maintaining a reservoir need to know when will a reservoir overflow knowing the depth of the water at several instances of time
- Rocket Scientists need to compute the precise velocity with which the satellite needs to be shot out from the rocket knowing the height of the rocket at various times.
- Financial institutions need to predict the changes in the value of a particular stock knowing its present value.
- Helpful to know how a particular parameter is changing with respect to some other parameter.
- Derivative of a function at a given point in its domain of definition.
- Definition 1
- Suppose f is a real valued function and a is a point in its domain of definition.
- The derivative of f at a is defined by

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Provided this limit exists.

- Derivative of $f(x)$ at a is denoted by $f^{\prime}(a)$
- Definition 2
- Suppose f is a real valued function, the function defined by

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Wherever limit exists is defined to be derivative of f at x

- Denoted by $\mathrm{f}^{\prime}(\mathrm{x})$.
- This definition of derivative is also called the first principle of derivative.

Thus $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

- $\mathrm{f}^{\prime}(\mathrm{x})$ is denoted by $\frac{d}{d x}(f(x))$ or if $\mathrm{y}=\mathrm{f}(\mathrm{x})$, it is denoted by dy $/ \mathrm{dx}$.
- This is referred to as derivative of $f(x)$ or y with respect to x.
- It is also denoted by $\mathrm{D}(\mathrm{f}(\mathrm{x})$).
- Further, derivative of f at $x=a$
is also denoted by $\left.\frac{d}{d x} f(x)\right|_{a}$ or $\left.\frac{d f}{d x}\right|_{a}$ or even $\left(\frac{d f}{d x}\right)_{x=a}$.

Theorem 5

- Let f and g be two functions such that their derivatives are defined in a common domain. Then
- Derivative of sum of two functions is sum of the derivatives of the functions.

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x) .
$$

- Derivative of difference of two functions is difference of the derivatives of the functions.

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x) .
$$

- Derivative of product of two functions is given by following product rule.

$$
\frac{d}{d x}[f(x) \cdot g(x)]=\frac{d}{d x} f(x) \cdot g(x)+f(x) \cdot \frac{d}{d x} g(x)
$$

- Derivative of quotient of two functions is given by the following quotient rule (whenever the denominator is non-zero).

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d}{d x} f(x) \cdot g(x)-f(x) \frac{d}{d x} g(x)}{(g(x))^{2}}
$$

- Let $\mathrm{u}=\mathrm{f}(\mathrm{x})=$ and $\mathrm{v}=\mathrm{g}(\mathrm{x})$.
- Product Rule:
- (uv) ' = u' v+ uv'.
- Also referred as Leibnitz rule for differentiating product of functions
- Quotient rule

$$
\text { - }\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}
$$

- Derivative of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is the constant

Theorem 6

- Derivative of $f(x)=x^{n}$ is $n x^{n-1}$ for any positive integer n.
- Proof
- By definition of the derivative function, we have

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} .
$$

Binomial theorem tells that $(x+h)^{n}=\left({ }^{n} \mathrm{C}_{0}\right) x^{n}+\left({ }^{n} \mathrm{C}_{1}\right) x^{n-1} h+\ldots+\left({ }^{n} \mathrm{C}_{n}\right) h^{n}$ and hence $(x+h)^{n}-x^{n}=h\left(n x^{n-1}+\ldots+h^{n-1}\right)$. Thus

$$
\begin{aligned}
\frac{d f(x)}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(n x^{n-1}+\ldots .+h^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(n x^{n-1}+\ldots+h^{n-1}\right),=n x^{n-1} .
\end{aligned}
$$

- This can be proved as below alternatively

$$
\begin{aligned}
\frac{d}{d x}\left(x^{n}\right) & =\frac{d}{d x}\left(x \cdot x^{n-1}\right) \\
& =\frac{d}{d x}(x) \cdot\left(x^{n-1}\right)+x \cdot \frac{d}{d x}\left(x^{n-1}\right) \text { (by product rule) } \\
& =1 \cdot x^{n-1}+x \cdot\left((n-1) x^{n-2}\right) \text { (by induction hypothesis) } \\
& =x^{n-1}+(n-1) x^{n-1}=n x^{n-1} .
\end{aligned}
$$

Theorem 7

- Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}$ be a polynomial function, where ais are all real numbers and $\mathrm{a}_{\mathrm{n}} \neq 0$. Then, the derivative function is given by

$$
\frac{d f(x)}{d x}=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{x-2}+\ldots+2 a_{2} x+a_{1}
$$

Quick Reference:

- For functions f and g the following holds:
$\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
$\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
$\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow \infty} g(x)}$
- Following are some of the standard limits

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1} \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=1 \\
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 \\
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1, \lim _{x \rightarrow a} \frac{\tan (x-a)}{x-a}=1 \\
& \lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1, \lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a, a>0, a \neq 1
\end{aligned}
$$

- Derivatives

- The derivative of a function f at a is defined by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Derivative of a function f at any point x is defined by

$$
f^{\prime}(x)=\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- For functions \mathbf{u} and \mathbf{v} the following holds:
$(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}$ $(u v)^{\prime}=u^{\prime} v+u v^{\prime} \quad \Rightarrow \quad \frac{d}{d x}(u v)=u \cdot \frac{d v}{d x}+v \cdot \frac{d u}{d x}$
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \quad \Rightarrow \quad \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}$
- Following are some of the standard derivatives
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\frac{d}{d x}(\sec x)=\sec x \cdot \tan x$
$\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cdot \cot x$

